Принцип даламбера теоретической механики. Аналитическая механика материальной точки и динамика твердого тела эйлера Понятия примеры динамических нагружений принцип д аламбера

Принцип Даламбера позволяет свести процесс составления уравнений динамики к составлению уравнений статики.

Этот принцип, который мы здесь изложим для свободной материальной точки и для точки, движущейся по поверхности или по кривой, применим к любой задаче динамики. Он позволит нам подвести итог всей теории движения точки.

Рассмотрим материальную точку М массы находящуюся под действием сил, равнодействующая которых имеет проекции Уравнения движения этой точки могут быть написаны так:

Будем рассматривать наряду с векторами, представляющими приложенные к точке М силы, вектор с проекциями - Этот вектор, численно равный произведению массы на ускорение и направленный противоположно ускорению, называется силой инерции, хотя это никоим образом не будет силой, приложенной к точке. Тогда уравнения выражают, что геометрическая сумма векторов и равна нулю, или, что в каждый момент времени существует равновесие между силой инерции и силами, действительно приложенными к точке.

Вывод уравнений движения из принципа Даламбера. На основании только что сказанного, для нахождения уравнений движения точки при любых условиях достаточно выразить, что имеет место равновесие между всеми силами, приложенными к точке, и силой инерции. Но это можно сделать методами статики. Можно, например, применить теорему о возможной работе. Для этого нужно различать среди сил, приложенных к точке, силы заданные и реакции связей. Через мы обозначим проекции заданных сил.

Чтобы написать, что существует равновесие между силами, действующими на точку, и силой инерции, достаточно написать, что на

всех возможных перемещениях допускаемых связями, существующими в момент сумма работ заданных сил и силы инерции Равна нулю:

Следует различать три случая:

1°. Свободная точка. произвольны. Если, как в п. 282, применяется произвольная система координат то, заменяя вариациями получим:

где произвольны.

Подставляя в равенство (2) и приравнивая результат нулю при произвольных получим уравнения движения в форме, указанной в п. 282, из которых мы вывели уравнения Лагранжа для свободной точки.

2°. Точка на поверхности. Пусть

есть уравнение поверхности, которая для общности предполагается движущейся. Давая переменному определенное значение, мы видим, что должны удовлетворять условию

выражающему, что возможное перемещение допускается связью, существующей в момент Если, как в п. 263, выразить координаты точки поверхности в функциях двух параметров, то получим

и соотношение (2) должно иметь место, каковы бы ни были Таким путем получатся уравнения движения в форме (4) п. 263. 3°. Точка на кривой. Пусть

Силы инерции в динамике материальной точки и механической системы

Силой инерции материальной точки называется произведение массы точки на ее ускорение, взятое со знаком минус, т. е. Силы инерции в динамике применяются в следующих случаях:

  • 1. При исследовании движения материальной точки в неинерциальной (подвижной) системе координат, т. е. относительного движения. Это переносная и кориолисова силы инерции, которые часто называют эйлеровыми.
  • 2. При решении задач динамики с использованием метода кинетостатики. В основу этого метода положен принцип Даламбера, в соответствии с которым вводятся силы инерции материальной точки или системы материальных точек, движущихся с некоторым ускорением в инерциальной системе отсчета. Эти силы инерции называются даламберовыми.
  • 3. Даламберовы силы инерции применяются также при решении задач динамики с использованием принципа Лагранжа-Даламбера или общего уравнения динамики.

Выражение в проекциях на оси декартовых координат

где - модули проекций ускорения точки на оси декартовых координат.

При криволинейном движении точки силу инерции можно разложить на касательную и нормальную:; , - модуль касательного и нормального ускорений; - радиус кривизны траектории;

V - скорость точки.

Принцип Даламбера для материальной точки

Если к несвободной материальной точке, движущейся под действием приложенных активных сил и сил реакций связей, приложить ее силу инерции, то в любой момент времени полученная система сил будет уравновешенной, т. е. геометрическая сумма указанных сил будет равна нулю.

механический точка тело материальный

где - равнодействующая активных сил, приложенных к точке; - равнодействующая реакций связей, наложенных на точку; сила инерции материальной точки. Примечание: На самом деле сила инерции материальной точки приложена не к самой точке, а к тому телу, которое сообщает ускорение данной точке.

Принцип Даламбера для механической системы

Геометрическая сумма главных векторов внешних сил, действующих на систему, и сил инерции всех точек системы, а также геометрическая сумма главных моментов этих сил относительно некоторого центра для несвободной механической системы в любой момент времени равны нулю, т.

Главный вектор и главный момент сил инерции твердого тела

Главный вектор и главный момент сил инерции точек системы определяются отдельно для каждого твердого тела, входящего в данную механическую систему. Их определение основывается на известном из статики методе Пуансо о приведении произвольной системы сил к заданному центру.

На основании этого метода силы инерции всех точек тела в общем случае его движения можно привести к центру масс и заменить их главным вектором * и главным моментом относительно центра масс. Они определяются по формулам т. е. при любом движении твердого тела главный вектор сил инерции равен со знаком минус произведению массы тела на ускорение центра масс тела; ,где r kc -- радиус-вектор k-й точки, проведенный из центра масс. Эти формулы в частных случаях движения твердого тела имеют вид:

1. Поступательное движение.

2. Вращение тела вокруг оси, проходящей через центр масс

3. Плоскопараллельное движение

Введение в аналитическую механику

Основные понятия аналитической механики

Аналитическая механика - область (раздел) механики, в котором изучается движение или равновесие механических систем с помощью общих, единых аналитических методов, применяемых для любых механических систем.

Рассмотрим наиболее характерные понятия аналитической механики.

1. Связи и их классификация.

Связи -- любые ограничения в виде тел или каких-либо кинематических условий, накладываемые на движения точек механической системы. Эти ограничения могут быть записаны в виде уравнений или неравенств.

Геометрические связи -- связи, уравнения которых содержат только координаты точек, т. е. ограничения накладываются только на координаты точек. Это связи в виде тел, поверхностей, линий и т. п.

Дифференциальные связи -- связи, накладывающие ограничения не только на координаты точек, но и на их скорости.

Голономные связи -- все геометрические связи и те дифференциальные, уравнения которых могут быть проинтегрированы.

Неголономные связи -- дифференциальные неинтегрируемые связи.

Стационарные связи -- связи, в уравнения которых не входит явно время.

Нестационарные связи -- связи, изменяющиеся с течением времени, т. е. в уравнения которых явно входит время.

Двусторонние (удерживающие) связи -- связи, ограничивающие движение точки в двух противоположных направлениях. Такие связи описываются уравнениями.

Односторонние (неудерживающие) связи - связи, ограничивающие движение только в одном направлении. Такие связи описываются неравенствами

2. Возможные (виртуальные) и действительные перемещения.

Возможными или виртуальными перемещениями точек механической системы называются воображаемые бесконечно малые перемещения, которые допускают наложенные на систему связи.

Возможным перемещением механической системы называется совокупность одновременных возможных перемещений точек системы, совместимых со связями. Пусть механическая система -- кривошипно-шатунный механизм.

Возможным перемещением точки А является перемещение которое в силу его малости считается прямолинейным и направленным перпендикулярно к ОА.

Возможным перемещением точки В (ползуна) является перемещение в направляющих. Возможным перемещением кривошипа ОА является поворот на угол, а шатуна АВ -- на угол вокруг МЦС (точка Р).

Действительными перемещениями точек системы называются также элементарные перемещения, которые допускают наложенные связи, но с учетом начальных условий движения и действующих на систему сил.

Число степеней свободы S механической системы - это число ее независимых возможных перемещений, которые можно сообщить точкам системы в фиксированный момент времени.

Принцип возможных перемещений (принцип Лагранжа)

Принцип возможных перемещений или принцип Лагранжа выражает условие равновесия несвободной механической системы, находящейся под действием приложенных активных сил. Формулировка принципа.

Для равновесия несвободной механической системы с двусторонними, стационарными, голономными и идеальными связями, находящейся в покое под действием приложенных активных сил, необходимо и достаточно, чтобы сумма элементарных работ всех активных сил равнялась пулю на любом возможном перемещении системы из рассматриваемого положения равновесия:

Общее уравнение динамики (принцип Лагранжа-Даламбера)

Общее уравнение динамики применяется к исследованию движения несвободных механических систем, тела или точки которых движутся с некоторыми ускорениями.

В соответствии с принципом Даламбера совокупность приложенных к механической системе активных сил, сил реакций связей и сил инерции всех точек системы образует уравновешенную систему сил.

Если к такой системе применить принцип возможных перемещений (принцип Лагранжа), то получим объединенный принцип Лагранжа-Даламбера или общее уравнение динамики. Формулировка этого принципа.

При движении несвободной механической системы с двусторонними, идеальными, стационарными и голономными связями сумма элементарных работ всех приложенных к точкам системы активных сил и сил инерции на любом возможном перемещении системы равна нулю:

Уравнения Лагранжа второго рода

Уравнения Лагранжа второго рода - это дифференциальные уравнения движения механической системы в обобщенных координатах.

Для системы с S степенями свободы эти уравнения имеют вид

Разность полной производной по времени от частной производной от кинетической энергии системы по обобщенной скорости и частной производной от кинетической энергии по обобщенной координате равна обобщенной силе.

Уравнения Лагранжа для консервативных механических систем. Циклические координаты и интегралы

Для консервативной системы обобщенные силы определяются через потенциальную энергию системы по формуле

Тогда уравнения Лагранжа перепишутся в виде

Так как потенциальная энергия системы есть функция только обобщенных координат, т. е. , то С учетом этого представим в виде, где Т - П = L -- функция Лагранжа (кинетический потенциал). Окончательно уравнения Лагранжа для консервативной системы

Устойчивость положения равновесия механической системы

Вопрос об устойчивости положения равновесия механических систем имеет непосредственное значение в теории колебания систем.

Положение равновесия может быть устойчивым, неустойчивым и безразличным.

Устойчивое положение равновесия - положение равновесия, при котором точки механической системы, выведенные из этого положения, в дальнейшем движутся под действием сил в непосредственной близости возле своего равновесного положения.

Это движение будет обладать той или иной степенью повторяемости во времени, т. е. система будет совершать колебательное движение.

Неустойчивое положение равновесия - положение равновесия, из которого при сколь угодно малом отклонении точек системы в дальнейшем действующие силы еще дальше будут удалять точки от их равновесного положения.

Безразличное положение равновесия -- положение равновесия, когда при любом малом начальном отклонении точек системы от этого положения в новом положении система также остается в равновесии..

Для определения устойчивого положения равновесия механической системы существуют различные методы.

Рассмотрим определение устойчивого положения равновесия на основании теоремы Лагранжа-Дирихле

Если в положении равновесия консервативной механической системы с идеальными и стационарными связями ее потенциальная энергия имеет минимум, то это положение равновесия является устойчивым.

Явление удара. Ударная сила и ударный импульс

Явление, при котором за ничтожно малый промежуток времени скорости точек тела изменяются на конечную величину, называется ударом. Этот промежуток времени называется временем удара. При ударе в течение бесконечно малого промежутка времени действует ударная сила. Ударной силой называется сила, импульс которой за время удара является конечной величиной.

Eсли конечная по модулю сила действует в течение времени, начиная свое действие в момент времени , то ее импульс имеет вид

Также при действии ударной силы на материальную точку можно сказать, что:

действием немгновенных сил за время удара можно пренебречь;

перемещение материальной точки за время удара можно не учитывать;

результат действия ударной силы на материальную точку выражается в конечном изменении за время удара вектора ее скорости.

Теорема об изменении количества движения механической системы при ударе

изменение количества движения механической системы за время удара равно геометрической сумме всех внешних ударных импульсов, приложенных к точкам систем, где - количество движения механической системы в момент окончания действия ударных сил, - количество движения механической системы в момент начала действия ударных сил, - внешний ударный импульс.

Определение 1

Принцип Даламбера является в теоретической механике одним из главных принципов динамики. Согласно этому принципу, при условии присоединения силы инерции к активно действующим на точки механической системы силам и реакциям наложенных связей, получается уравновешенная система.

Данный принцип получил название в честь французского ученого Ж. Даламбера, впервые предложившего его формулировку в своем сочинении «Динамика».

Определение принципа Даламбера

Замечание 1

Принцип Даламбера звучит следующим образом: если к воздействующей на тело активной силе прикладывается дополнительная сила инерции, тело будет пребывать в равновесном состоянии. При этом суммарное значение всех действующих в системе сил, дополненное вектором инерции, получит нулевое значение.

Согласно указанному принципу, в отношении каждой i-той точки системы, становится верным равенство:

$F_i+N_i+J_i=0$, где:

  • $F_i$ -активно воздействующая на эту точку сила,
  • $N_i$ - реакция связи, наложенной на точку;
  • $J_i$ - сила инерции, определяемая формулой $J_i=-m_ia_i$ (она направлена противоположно этому ускорению).

Фактически, отдельно для каждой рассматриваемой материальной точки $ma$ переносится справа налево (второй закон Ньютона):

$F=ma$, $F-ma=0$.

$ma$ при этом называется силой инерции Даламбера.

Такое понятие, как сила инерции, было введено еще Ньютоном. Согласно рассуждениям ученого, при условии движения точки под воздействием силы $F=ma$, тело (или система) – становится источником этой силы. При этом, согласно закону о равенстве действия и противодействия, ускоряемая точка будет влиять на ускоряющее ее тело с силой $Ф=-ma$. Такой силе Ньютон дал название системы инерции точки.

Силы $F$ и $Ф$ будут равными и противоположными, но приложенными к разным телам, что исключает их сложение. Непосредственно на точку сила инерции воздействия не оказывает, поскольку для нее она представляет фиктивную силу. При этом точка оставалась бы в состоянии покоя, если бы, помимо силы $F$, на точку оказывала воздействие еще и сила $Ф$.

Замечание 2

Принцип Даламбера позволяет применять при решении задач динамики более упрощенные методы статики, что объясняет его широкое применение в инженерной практике. На этом принципе основывается метод кинетостатики. Особенно он удобен в применении с целью установления реакций связей в ситуации, когда известен закон происходящего движения или он получен при решении соответствующих уравнений.

Разновидностью принципа Даламбера выступает принцип Германа-Эйлера, фактически представлявшего собой форму данного принципа, но обнаруженную до появления публикации сочинения ученого в 1743 году. При этом принцип Эйлера не рассматривался его автором (в отличие от принципа Даламбера) в качестве основы для общего метода решения задач движения механических систем со связями. Принцип Даламбера считается более целесообразным в применении в случае необходимости определения неизвестных сил (для решения первой задачи динамики).

Принцип Даламбера для материальной точки

Многообразие типов решаемых в механике задач нуждается в разработке эффективных методик составления уравнений движения для механических систем. Одним из подобных методов, позволяющих посредством уравнений описать движение произвольных систем, считается в теоретической механике принцип Даламбера.

Опираясь на второй закон динамики, для несвободной материальной точки запишем формулу:

$m\bar{a}=\bar{F}+\bar{R}$,

где $R$ представляет реакцию связи.

Принимая значение:

$\bar{Ф}=-m\bar{a}$, где $Ф$- сила инерции, получаем:

$\bar{F}+\bar{R}+\bar{Ф}=0$

Эта формула является выражением принципа Даламбера для материальной точки, согласно которому, для движущейся в любой момент времени точки геометрическая сумма воздействующих на нее активных сил и силы инерции получает нулевое значение. Этот принцип позволяет записывать уравнения статики для движущейся точки.

Принцип Даламбера для механической системы

Для состоящей из $n$-точек механической системы, можно записать $n$-уравнений вида:

$\bar{F_i}+ \bar{R_i}+\bar{Ф_i}=0$

При суммировании всех этих уравнений и введении следующих обозначений:

которые являются главными векторами внешних сил, реакции связей и сил инерции соответственно, получаем:

$\sum{F_i}+\sum{R_i}+\sum{Ф_i}=0$, т. е.

$FE + R + Ф = 0$

Условием для равновесного состояния твердого тела является нулевое значение главных вектора и момента действующих сил. Учитывая это положение и теорему Вариньона о моменте равнодействующей в результате запишем такое соотношение:

$\sum{riF_i}+\sum{riR_i}+\sum{riФ_i} = 0$

примем следующие обозначения:

$\sum{riF_i}=MOF$

$\sum{riR_i}=MOR$

$\sum{riФ_i}=MOФ$

главные моменты внешних сил, реакции связей и сил инерции соответственно.

В итоге получаем:

$\bar{F^E}+\bar{R}+\bar{Ф}=0$

$\bar{M_0^F}+\bar{M_0^R}+\bar{M_0^Ф}=0$

Эти две формулы являются выражением принципа Даламбера для механической системы. В любой момент времени для движущейся механической системы геометрическая сумма главного вектора реакций связей, внешних сил, и сил инерции получает нулевое значение. Также нулевой будет и геометрическая сумма главных моментов от сил инерции, внешних сил и реакций связей.

Полученные формулы являются дифференциальными уравнениями второго порядка из-за присутствия в каждом из них ускорения в силах инерции (второй производной закона движения точки).

Принцип Даламбера позволяет решать методами статики задачи динамики. Для механической системы можно записывать уравнения движения в виде уравнений равновесия. Из таких уравнений можно определить неизвестные силы, в частности, реакции связей (первая задача динамики).

Все методы решения задач динамики, которые мы до сих пор рассматривали, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствиями этих законов. Однако, этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Пусть мы имеем систему, состоящих из n материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил и (в которые входят и активные силы, и реакции связи) точка получает по отношению к инерционной системе отсчета некоторое ускорение .

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки(иногда даламберовой силой инерции).

Тогда оказывается, что движение точки обладает следующим общим свойством: если в каждый момент времени к фактически действующим на точку силам и прибавить силу инерции , то полученная система сил будет уравновешенной, т.е. будет

.

Это выражение выражает принцип Даламбера для одной материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает . Перенося здесь член в правую часть равенства и придем к последнему соотношению.

Повторяя проделанные высшее рассуждения по отношению к каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы, кроме фактически действующих на ней внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и к ней можно будет применять все уравнения статики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; что делает единообразный подход к решению задач и обычно намного упрощает соответствующие расчёты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики.


Применяя принцип Даламбера, следует иметь в виду, что на точку механической системы, движение которой изучается, действуют только внешние и внутренние силы и , возникающие в результате взаимодействия точек системы друг с другом и с телами, не входящими в систему; под действием этих сил точки системы и движутся с соответствующими ускорениями . Силы же инерции, о которых говорится в принципе Даламбера, на движущиеся точки не действуют (иначе, эти точки находились бы в покое или двигались без ускорений и тогда не было бы и самих сил инерции). Введение сил инерции - это лишь приём, позволяющий составлять уравнения динамики с помощью более простых методов статики.

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причём по принципу отвердевания это справедливо для сил, действующих не только на твёрдое тело, но и на любую изменяемую систе6му. Тогда на основании принципа Даламбера должно быть.

Принцип Даламбера устанавливает единый подход к исследованию движения материального объекта вне зависимости от характера налагаемых на это движение условий. При этом динамическим уравнениям движения придается вид уравнений равновесия. Отсюда второе название принципа Даламбера – метод кинетостатики.

Для материальной точки в любой момент движения геометрическая сумма приложенных активных сил, реакций связей и условно присоединенной силы инерции равна нулю (рис. 48).

Где Ф-сила инерции материальной точки, равная:

. (15.2)

Рисунок 48

Рисунок 49

Сила инерции приложена не к движущемуся объекта, а к связям, определяющим его движение. Человек сообщает ускорение вагонетке (рис. 49), толкая ее силой.Сила инерции представляет собой противодействие действию человека на вагонетку, т.е. по модулю равна силе и направлена в противоположную сторону.

Если точка движется по криволинейной траектории, то силу инерции можно спроецировать на естественные оси координат.

Рисунок 50

; (15.3)

, (15.4) где -- радиус кривизны траектории.

При решении задач с помощью метода кинетостатики необходимо:

1. выбрать систему координат;

2. показать все активные силы, приложенные к каждой точке;

3. отбросить связи, заменив их соответствующими реакциями;

4. добавить к активным силам и реакциям связей силу инерции;

5. составить уравнения кинетостатики, из которых определить искомые величины.

ПРИМЕР 21.

О

РЕШЕНИЕ.

1. Рассмотрим автомобиль, находящийся в верхней точке выпуклого моста. Рассмотрим автомобиль как материальную точку, на которую заданная сила и реакцию связи.

2. Так как автомобиль движется с постоянной скоростью, запишем принцип Даламбера для материальной точки в проекции на нормаль
. (1) Выразим силу инерции:
; нормальное давление автомобиля определим из уравнения (1):Н.

пределить давление автомобиля весомG=10000H, находящегося в верхней точке выпуклого моста радиусом =20м и движущегося с постоянной скоростьюV=36км/ч (рис. 51).

16. Принцип даламбера для механическойй системы. Главный вектор и главный момент сил инерции.

Если к каждой точке механической системы в любой момент движения условно приложить соответствующую силы инерции, то в любой момент движения геометрическая сумма действующих на точку активных сил, реакций связей и силы инерции равна нулю.

Уравнение, выражающее принцип Даламбера для механической системы, имеет вид
. (16.1) Сумма моментов этих уравновешенных сил относительно любого центра также равна нулю
. (16.2) При применении принципа Даламбера уравнения движения системы составляются в форме уравнений равновесия. С помощью уравнений (16.1) и (16.2) можно определить динамические реакции.

ПРИМЕР 22.

Вертикальный вал АК, вращающийся с постоянной угловой скоростью =10с -1 , закреплен подпятником в точке А и цилиндрическим подшипником в точке К (рис. 52). К валу в точке Е прикреплены тонкий однородный ломаный стержень массой m=10кг и длиной 10b, состоящий из частей 1 и 2, где b=0,1м, а их массы m 1 и m 2 пропорциональны длинам. Стержень прикреплен к валу шарниром в точке Е и невесомым стержнем 4 жестко закрепленным в точке В. Определить реакцию шарнира Е и стержня 4.

РЕШЕНИЕ.

1. Длина ломаного стержня равна 10b. Выразим массы частей стержня, пропорциональные длинам: m 1 =0,4m; m 2 =0,3m; m 3 =0,3m.

Рисунок 42

2. Для определения искомых реакций рассмотрим движение ломаного стержня и применим принцип Даламбера. Расположим стержень в плоскости ху, изобразим действующие на него внешние силы: ,,, реакции шарнираии реакцию
стержня 4. Присоединяем к этим силам силы инерции частей стержня:
;
;
,

где
;
;
.

Тогда Н.Н.Н.

Линия действия равнодействующих сил инерции ,
и
проходит на расстоянияхh 1 , h 2 и h 3 от оси х: м;

3. Согласно принципу Даламбера приложенные активные силы, реакции связей и силы инерции образуют уравновешенную систему сил. Составим для плоской системы сил три уравнения равновесия:

; ; (1)
;; (2)
;.(3)

Решая систему уравнений (1)+(3), подставляя заданные значения соответствующих величин, найдем искомые реакции:

N= y E = x E =

Если все силы, действующие на точки механической системы, подразделить на внешние и внутренние, (рис. 53), то для произвольной точки механической системы можно записать два векторных равенства:

; (16.3)
.

Рисунок 53

Учитывая свойства внутренних сил, получим принцип Даламбера для механической системы в следующем виде:
; (16.4)
, (16.5) где,-- соответственно главные векторы внешних сил и сил инерции;

,
-- соответственно главные моменты внешних сил и сил инерции относительно произвольного центра О.

Главный вектор и главный момент
заменяют силы инерции всех точек системы, так как к каждой точке системы необходимо приложить свою силу инерции, зависящую от ускорения точки. Используя теорему о движении центра масс и об изменении кинетического момента системы относительно произвольного центра, получаем:
, (16.6)

. (16.7) Для твердого тела, вращающегося вокруг неподвижной оси z, главный момент сил инерции относительно этой оси равен
, (16.8) где-- угловое ускорение тела.

При поступательном движении тела силы инерции всех его точек приводятся к равнодействующей, равной главному вектору сил инерции, т.е.
.

П

Рисунок 54

ри вращении тела вокруг неподвижной осиz, проходящей через центр масс, силы инерции всех точек тела приводятся к паре сил, лежащей в плоскости, перпендикулярной к оси вращения, и имеющей момент
, (16.9) где-- момент инерции тела относительно оси вращения.

Если тело имеет плоскость симметрии и вращается вокруг неподвижной оси z, перпендикулярной плоскости симметрии и не проходящей через центр масс тела, сила инерции всех точек тела приводится к равнодействующей, равной главному вектору сил инерции системы, но приложенной к некоторой точке К (рис. 54). Линия действия равнодействующей отстоит от точки О на расстоянии
. (16.10)

При плоском движении тела, имеющего плоскость симметрии, тело движется вдоль этой плоскости (рис.55). Главный вектор и главный момент сил инерции также лежат в этой плоскости и определяются по формулам:

Рисунок 55


;

.

Знак минус показывает, что направление момента
противоположно направлению углового ускорения тела.

ПРИМЕР 23.

Определить силу, стремящуюся разорвать равномерно вращающийся маховик массой m, считая его массу распределенной по ободу. Радиус маховика r, угловая скорость (рис. 56).

РЕШЕНИЕ.

1. Искомая сила является внутренней.-- равнодействующая сил инерции элементов обода.
. Выразим координату х с центра масс дуги обода с центральным углом
:
, тогда
.

2. Для определения силы применим принцип Даламбера в проекции на ось х:
;
, откуда
.

3. Если маховик – сплошной однородный диск, то
, тогда
.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.