Регион:

Газопламенное напыление и металлизация

Газопламенное напыление и металлизация

Нагрев присадочного материала при газопламенном напылении и металлизации осуществляется за счет теплоты, выделяемой в результате сгорания различных горючих газов (ацетилена, пропан-бутана, природного газа и др.) в среде кислорода. Из горючих газов наибольшее применение получил ацетилен, сгорание которого в смеси с кислородом позволяет получать температуру пламени порядка 3100-3200 °С, что на 500-800 °С выше температуры его заменителей (табл. 3.5).

Типы пламени

В зависимости от соотношения горючего вещества и кислорода газовое пламя подразделяют на:

  • окислительное - с избытком кислорода;
  • нормальное - при паритетном соотношении горючего вещества и кислорода;
  • восстановительное - с избытком горючего газа.

Тип газового пламени, используемый при напылении, выбирается в зависимости от химического состава напыляемого металла (табл. 3.6).

Таблица 3.5. Термодинамические характеристики газовых смесей.

Параметры

Горючий газ

Ацетилен
С2Н2

Водород
Н2

Метан
СН4

Пропан
С3Н8

Бутан
С4Н10

Теплотворная способность, кДж/м3

52 800

10 060

33 520

87 150

116 480

Температура пламени в смеси с кислородом, °С

3100-3200

2100-2500

2000-2700

2400-2700

2400-2700

Удельный расход кислорода, м^м3

2,5

0,5

2,03

5,15

6,8

Мощность пламени выбирают в зависимости от размеров детали. При напылении стальных деталей применяют восстановительное (нормальное) или науглероживающее (с небольшим избытком ацетилена) пламя. Перед началом напыления деталь подогревают до температуры 50-100 °С. В процессе напыления необходимо следить, чтобы поверхность напыляемой детали не нагревалась выше 250 °С. Температуру можно контролировать с помощью термочувствительных карандашей.

По виду присадочного материала газопламенное напыление и металлизацию подразделяют на:

  • металлизацию стержневыми присадочными материалами;
  • порошковое напыление.

Проволочные распылители

Первый газопламенный проволочный распылитель разработал в 1913 г. М.У. Шооп. Стержневой присадочный материал с помощью механизма подачи направляется через центральное отверстие горелки в высокотемпературную зону пламени, где нагревается до температуры плавления. Полученная капля жидкого металла с его торца распыляется сжатым воздухом и в виде мелких частиц переносится на поверхность детали (рис. 3.6).

Таблица 3.6. Характеристики газопламенного напыления.

Распыляемый материал

Дистанция напыления, мм

Вид пламени

Ручное

Механизированное

Нержавеющая сталь

80-150

150-250

Нейтральное

Высокоуглеродистая сталь

180-200

250-300

Нейтральное

Бронза

100-150

180-250

Слегка окислительное

Алюминий

100-150

180-250

Слегка восстановительное

Цинк

280-360

400-500

Нейтральное

Молибден

80-130

200-300

10% - окислительное

Схема проволочного распылителя

Рис. 3.6. Схема проволочного распылителя:
1 - воздушное сопло; 2 - газовое сопло; 3 - пруток; 4 - направляющая трубка.

В качестве стержневого присадочного материала используют прутки, проволоки и шнуровые материалы.

Прутковые материалы используются при напылении керамики. Прутки изготавливают из оксидов или карбидов металлов со связующим на жидком стекле диаметром до 8,0 мм. Содержание частиц твердых фаз в прутке может достигать 95 %. При нагреве прутка связующее выгорает, а зерна твердой фазы подаются на поверхность изделия. Основным недостатком использования керамики является прерывистость процесса, влияющая на качество поверхности покрытия. Наряду с прутковыми материалами используются и трубчатые полые стержни, заполненные зерновым релитом.

Распылитель для прутковых материалов имеет дополнительное воздушное сопло, направляющее воздух в радиальном направлении в зону плавления керамического стержня, где осевая скорость частиц невелика. «Загибающий» воздух дробит относительно крупные (100-160 мкм) расплавленные частицы на более мелкие (20-40 мкм) и направляет их под углом 45-50° к поверхности изделия. Дистанция напыления составляет 50 мм. Осевое расположение распылителя и малая дистанция напыления позволяли наносить покрытия на внутреннюю поверхность трубы диаметром 100 мм. Проволока для напыления применяется диаметром от 0,8 до 2,0 мм и изготавливается из различных материалов (коррозионно-стойкие и углеродистые стали, латуни, бронзы, баббиты, Al, Cu, Mo, Zn, Sn, Pb, сплавы на никелевой и кобальтовой основах). Производительность напыления и металлизации проволокой из цветных металлов - до 15 кг/ч, из стали и сплавов - до 9 кг/ч. Расход кислорода - 50 л/мин, расход ацетилена или пропана - до 20 л/мин. Давление воздуха - 0,5 МПа.

При газопламенном проволочном напылении в получаемом покрытии содержится меньше оксидов, чем при порошковом напылении. Это имеет особо важное значение для получения коррозионно-стойких покрытий с низкой пористостью. Для снижения степени окисления присадочного материала камеру сгорания приближают к выходному отверстию сопла. Однако относительно малая скорость движения частиц при газопламенном напылении проволокой не обеспечивает формирования высокоплотного покрытия.

В последние десятилетия наряду с проволоками все большее применение находят шнуровые присадочные материалы. Прочность и эластичность гибких шнуров позволяет пользоваться ими так же, как и проволокой и наносить покрытия с помощью газопламенных аппаратов проволочного типа.

Шнуровые материалы состоят из органического связующего, составляющего оболочку, и порошкового наполнителя, включающего высокотвердые компоненты и соединения, обеспечивающие протекание экзотермических реакций и синтезирование новых фаз в процессе напыления. Это позволяет повысить показатели адгезионной и когезионной прочности.

В шнуровых материалах используют порошковые наполнители на основе самофлюсующихся сплавов систем Ni(Co)-Cr-B-Si и в смесях с карбидом вольфрама или оксидами алюминия, титана, хрома, циркония. Шнуры производятся диаметром от 4,0 и 7,0 мм и размером зерен литого карбида вольфрама в диапазоне от 0,1 до 2,5 мм, причем для конкретных видов изнашивания применяются специальные комбинации мелкозернистого и крупнозернистого карбида вольфрама. Равномерное распределение зерен карбидов в порошковом шнуре обеспечивает наиболее благоприятное их расположение на напыляемой поверхности, что приводит к повышению износостойкости наплавленного слоя (рис. 3.7).

Матрица наплавленного слоя, представляющая собой никелевый самофлюсущийся сплав системы Ni-Cr-B-Si, обеспечивает хорошее смачивание зерен карбидов, обладает низкой температурой плавления (950-1050 °С), имеет высокую текучесть и отличается высокой стойкостью к воздействию кислот, щелочей и других коррозионно-активных сред.

Технология ручной газопламенной наплавки шнурового материала «Сфекорд-HR»

Рис. 3.7. Технология ручной газопламенной наплавки шнурового материала «Сфекорд-HR».

Порошковый распылитель

Напыление порошками позволяет в широких пределах регулировать состав наносимых покрытий. В зависимости от места подвода порошка в горелку и его транспортирования в зону пламени газопорошковое напыление подразделяют на два способа.

  1. Порошок из питателя (рис. 3.8) поступает в центральный канал горелки, захватывается транспортирующим газом и подается в факел ацетиленокислородного пламени, струей которого оплавляется и направляется на поверхность детали, образуя заданный слой покрытия.

Схема газопламенного напыления с вводом порошка в зону пламени транспортирующим газом

Рис. 3.8. Схема газопламенного напыления с вводом порошка в зону пламени транспортирующим газом:
1 - сопло; 2 - пламя; 3 - покрытие; 4 - деталь; 5 - кислород и горючий газ; 6 -транспортирующий газ; 7 - напыляемый порошок

Порошковая струя окружена кольцом пламени. При перемешивании струй пламени и газопорошковой взвеси происходит теплообмен. Частицы нагреваются до температуры плавления и переносятся на поверхность детали.

  1. Порошок из бункера (рис. 3.9) подается с внешней стороны мундштука в зону пламени, где его частицы оплавяются и направляются газовым потоком на поверхность напыляемой детали.

Применение при первом способе напыления транспортирующего газа, обычно инертного, для подачи порошка позволяет уменьшить его окисление, однако усложняется схема подачи и конструкция газовой горелки. Второй способ характеризуется большей простотой оборудование и облегчается выбор оптимального режима.

Наиболее качественные покрытия получаются при первоначальном напылении подслоя термореагирующим порошком толщиной 0,05-0,15 мм, а затем основного слоя износостойким порошковым сплавом толщиной 2 мм. Подслой и основной слой наносят при одних и тех же режимах напыления:

  • давление кислорода 0,35-0,45 МПа;
  • давление ацетилена 0,03-0,05 МПа;
  • расход кислорода 960-1100 л/ч;
  • расход ацетилена 900-1000 л/ч;
  • расстояние от среза сопла мундштука до наплавляемой поверхности 160-200 мм;
  • продольная подача 3-5 мм/об;
  • расход порошка 2,5-3 кг/ч.

Схема газопламенного напыления с внешним вводом порошка

Рис. 3.9. Схема газопламенного напыления с внешним вводом порошка.

Процесс газопламенного напыления можно проводить с одновременным оплавлением, что возможно лишь газовым пламенем. Плазменная струя из-за интенсивного неравномерного нагрева напыленного слоя не обеспечивает получения качественного покрытия. Напыление с одновременным оплавлением рекомендуется выполнять в такой последовательности:

  • подогреть всю деталь до температуры 250-300 °С;
  • на восстанавливаемые поверхности для их защиты от последующего окисления напылить слои толщиной 0,2-0,3 мм;
  • напыленный участок поверхности нагреть до состояния «запотевания», что характерно для процесса оплавления;
  • на предварительно оплавленный слой нанести новый, доводя его до состояния оплавления.

В процессе оплавления важно не допустить перегрева напыленного слоя до состояния жидкой ванны, а после оплавления обеспечить медленное охлаждение детали (в песке, асбесте, печи). Перегрев приводит к стеканию металла, образованию пор, а быстрое охлаждение - к возникновению трещин, к отслаиванию. Для восстановления деталей этим способом наиболее рационально применять порошковые сплавы ПГ-ЮН-01, ПГ-ЮН-03, ПГ-СРЗ, ПГ-СР4. Толщина напыленного слоя может доходить до 3 мм.

Высокоскоростное напыление

Высокоскоростное газопламенное напыление появилось в начале 80-х годов прошлого века и характеризуется скоростью газового потока до 1000 м/с. Плотность покрытий достигает 99 %. Увеличение скорости частиц при меньшей их температуре позволило снизить уровень окисленности напыляемого металла и повысить плотность порошкового покрытия. В качестве наносимого материала используют порошки карбидов, металлокарбидов, сплавов на основе Ni, Cu и др. Для увеличения скорости частиц увеличивают скорость истечения продуктов сгорания путем повышения давления в камере сгорания до 1,0—1,5 МПа. На рис. 3.10 представлена схема высокоскоростного распылителя системы ВСН.

Схема высокоскоростного порошкового распылителя

Рис. 3.10. Схема высокоскоростного порошкового распылителя:
1 - подача порошка (осевая); 2 - подача кислорода; 3 - подача топлива; 4 - подача порошка (радиальная); 5 - ствол.

Сопла распылителя

Рис. 3.11. Сопла распылителя:
а - цилиндрическое; б - расширяющееся (сопло Лаваля)

В порошковых распылителях ВСН первого и второго поколений использовалось цилиндрическое сопло (рис. 3.11, а), а затем в конструкции соплового аппарата стало использоваться сопло Лаваля (рис. 3.11, б).

Для систем первого поколения давление в камере сгорания составляло 0,3-0,5 МПа, скорость частиц - 450 м/с для порошковых смесей системы WC-Co с грануляцией 10-45 мкм. Для систем второго поколения давление в камере сгорания повысилось до 0,6-1,0 МПа, что привело к увеличению скорости движения частиц до 600-650 м/с. Расход порошка составил 10 кг/ч. В системах третьего поколения с применением расширяющихся профильных сопел Лаваля расход порошка достигает 18 кг/ч.

Возможно Вас так же заинтересуют следующие статьи:

comments powered by HyperComments