Как строить прямую на координатной плоскости. Координатные плоскости и графики. Область между прямыми

Утверждать, что вы знаете математику, невозможно, если вы не умеете строить графики, изображать неравенства на координатной прямой, работать с осями координат. Визуальная составляющая в науке жизненно необходима, ведь без наглядных примеров в формулах и вычислениях порой можно сильно запутаться. В данной статье мы посмотрим, как работать с осями координат, и научимся строить простейшие графики функций.

Применение

Координатная прямая - это основа простейших видов графиков, с которыми сталкивается школьник на своем учебном пути. Она используется практически в каждой математической теме: при расчёте скорости и времени, проецировании размеров объектов и вычислении их площади, в тригонометрии при работе с синусами и косинусами.

Главная ценность такой прямой - это наглядность. Поскольку математика - это наука, в которой требуется высокий уровень абстрактности мышления, графики помогают в представлении объекта в реальном мире. Как он себя ведет? В какой точке пространства будет находиться через несколько секунд, минут, часов? Что можно сказать о нём в сопоставлении с другими объектами? Какой скоростью он обладает в случайно выбранный момент времени? Как охарактеризовать его движение?

А про скорость речь идёт неспроста - именно её зачастую отображают графики функции. А ещё они могут отображать изменение температуры или давления внутри объекта, его размеров, ориентации относительно горизонта. Таким образом, построить координатную прямую зачастую требуется и в физике.

Одномерный график

Существует понятие многомерности. В одномерном пространстве достаточно всего одного числа, чтобы определить местоположение точки. Это как раз и есть случай с применением координатной прямой. Если пространство двухмерное, то потребуется два числа. Графики такого типа используются гораздо чаще, и чуть дальше в статье мы их обязательно рассмотрим.

Что можно увидеть с помощью точек на оси, если она всего одна? Можно увидеть размер объекта, его положение в пространстве относительно некоторого «нуля», т. е. точки, выбранной в качестве начала отсчёта.

Изменение параметров с течением времени увидеть не удастся, так как все показания будут отображаться для одного конкретного момента. Однако с чего-то надо начинать! Итак, приступим.

Как построить координатную ось

Для начала требуется провести горизонтальную линию - это и будет наша ось. С правой стороны «заострим» её, чтобы она была похожа на стрелку. Таким образом мы обозначим направление, в котором числа будут увеличиваться. В сторону уменьшения стрелка обычно не ставится. Традиционно ось направлена вправо, поэтому мы просто последуем данному правилу.

Поставим нулевую отметку, которая будет отображать начало координат. Это то самое место, от которого ведется отсчёт, будь то размер, вес, скорость или что угодно другое. Кроме нуля, мы обязательно должны обозначить так называемую цену деления, т. е. ввести стандарт единицы, в соответствии с которой будем откладывать на оси те или иные величины. Это обязательно нужно делать, чтобы уметь находить длину отрезка на координатной прямой.

Через равное расстояние друг от друга поставим точки или «зарубки» на линии, а под ними напишем соответственно 1,2,3 и так далее. И вот, всё готово. Но с получившимся графиком надо ещё научиться работать.

Виды точек на координатной прямой

С первого взгляда на предложенные в учебниках рисунки становится понятно: точки на оси могут быть закрашенные или не закрашенные. Вы думаете, это случайность? Вовсе нет! «Сплошная» точка используется при нестрогом неравенстве - том, которое читается как «больше или равно». Если же нужно строго ограничить интервал (например, «икс» может принимать значения от нуля до единицы, но не включает её), мы воспользуемся «полой» точкой, то есть, по сути, маленьким кружком на оси. Надо заметить, что ученики не очень любят строгие неравенства, потому что с ними сложнее работать.

В зависимости от того, какие точки вы используете на графике, будут называться и построенные интервалы. Если неравенство с двух сторон нестрогое, то мы получим отрезок. Если с одной стороны он окажется «открыт», то называться будет полуинтервалом. Наконец, если часть прямой ограничена с двух сторон полыми точками, она будет называться интервалом.

Плоскость

При построении двух прямых на координатной плоскости мы уже можем рассматривать графики функций. Скажем, горизонтальная линия будет осью времени, а вертикальная - расстоянием. И вот уже мы в состоянии определить, какое расстояние преодолеет объект через минуту или час пути. Таким образом, работа с плоскостью даёт возможность следить за изменением состояния объекта. Это гораздо интереснее, чем исследование статичного состояния.

Простейший график на такой плоскости - прямая, она отражает функцию Y(X) = aX + b. Линия изгибается? Это означает, что объект меняет свои характеристики в процессе исследования.

Представьте, вы стоите на крыше здания и держите в вытянутой руке камень. Когда вы отпустите его, он полетит вниз, начав своё движение с нулевой скорости. Но уже через секунду он будет преодолевать 36 километров в час. Камень продолжит ускоряться и дальше, и чтобы нарисовать его движение на графике, вам потребуется замерить его скорость в несколько моментов времени, выставив точки на оси в соответствующих местах.

Отметки на горизонтальной координатной прямой по умолчанию получают название X1, X2,X3, а на вертикальной - Y1, Y2,Y3 соответственно. Проецируя их на плоскость и находя пересечения, мы находим фрагменты результирующего рисунка. Соединив их одной линией, мы получим график функции. В случае с падающим камнем квадратичная функция будет иметь вид: Y(X) = aX * X + bX + c.

Масштаб

Конечно, не обязательно выставлять рядом с делениями на прямой целочисленные значения. Если вы рассматриваете движение улитки, которая ползет со скоростью 0,03 метра в минуту, выставьте в качестве значений на координатной прямой дроби. В данном случае задайте цену деления как 0,01 метра.

Особенно удобно выполнять такие чертежи в тетради в клетку - здесь сразу видно, хватит ли места на листе для вашего графика, не выйдете ли вы за поля. Свои силы рассчитать несложно, ведь ширина клетки в такой тетради - 0,5 сантиметра. Понадобилось - уменьшили рисунок. От изменения масштаба графика он не потеряет и не изменит своих свойств.

Координаты точки и отрезка

Когда на уроке дается математическая задача, в ней могут содержаться параметры различных геометрических фигур как в виде длин сторон, периметра, площади, так и в виде координат. В этом случае может потребоваться как построить фигуру, так и получить какие-то данные, связанные с ней. Возникает вопрос: как найти на координатной прямой требуемую информацию? И как построить фигуру?

Например, речь идёт о точке. Тогда в условии задачи будет фигурировать заглавная буква, а в скобках будут стоять несколько цифр, чаще всего две (это значит, считать мы будем в двухмерном пространстве). Если в скобках три числа, записанные через точку с запятой или через запятую, то это трехмерное пространство. Каждое из значений - это координата на соответствующей оси: сначала по горизонтальной (X), затем - по вертикальной (Y).

Помните, как построить отрезок? Вы проходили это на геометрии. Если есть две точки, то между ними можно провести прямую. Их-то координаты и указываются в скобках, если в задаче фигурирует отрезок. Например: A(15, 13) - B(1, 4). Чтобы построить такую прямую, нужно на координатной плоскости найти и отметить точки, а затем их соединить. Вот и всё!

А любые многоугольники, как вы знаете, можно нарисовать с помощью отрезков. Задача решена.

Расчёты

Допустим, есть некоторый объект, положение которого по оси X характеризуется двумя числами: начинается он в точке с координатой (-3) и заканчивается в (+2). Если мы хотим узнать длину этого предмета, то должны вычесть из большего числа меньшее. Обратите внимание, что отрицательное число поглощает знак вычитания, потому что «минус на минус даёт плюс». Итак, мы складываем (2+3) и получаем 5. Это и есть требуемый результат.

Другой пример: нам дана конечная точка и длина объекта, но не дана начальная (и требуется её найти). Пусть положение известной точки будет (6), а размер изучаемого предмета - (4). Вычитая длину из конечной координаты, мы получим ответ. Итого: (6 - 4) = 2.

Отрицательные числа

Нередко требуется на практике работать с отрицательными значениями. В этом случае мы будем уходить по оси координат влево. Например, объект высотой 3 сантиметра плавает в воде. На треть он погружен в жидкость, на две трети находится на воздухе. Тогда, выбрав в качестве оси поверхность воды, мы с помощью простейших арифметических вычислений получаем два числа: верхняя точка объекта имеет координату (+2), а нижняя - (-1) сантиметр.

Нетрудно заметить, что в случае с плоскостью у нас образуется четыре четверти координатной прямой. Каждая из них имеет свой номер. В первой (верхней правой) части будут располагаться точки, имеющие две положительные координаты, во второй - слева сверху - значения по оси «икс» будут отрицательные, а по «игрек» - положительные. Третья и четвертая отсчитываются дальше против часовой стрелки.

Важное свойство

Вы знаете, что прямую можно представить как бесконечное множество точек. Мы можем просмотреть сколь угодно внимательно любое количество значений в каждую сторону оси, но не встретим повторяющихся. Это кажется наивным и понятным, но проистекает то утверждение из важного факта: каждому числу соответствует одна и только одна точка на координатной прямой.

Заключение

Помните, что любые оси, фигуры и по возможности графики необходимо строить по линейке. Единицы измерений были придуманы человеком не случайно - допустив погрешность при черчении, вы рискуете увидеть уже не то изображение, которое должно было получиться.

Будьте внимательны и аккуратны в построении графиков и вычислениях. Как и любая наука, изучаемая в школе, математика любит точность. Приложите немного старания, и хорошие оценки не заставят себя долго ждать.

Прямая вполне определена, если известны две принадлежащие ей точки. Для того чтобы построить прямую по ее уравнению, надо, пользуясь этим уравнением, найти координаты двух ее точек. Твердо следует помнить, что если точка принадлежит прямой, то координаты этой точки удовлетворяют уравнению прямой.

При практическом построении прямой по ее уравнению наиболее точный график получится тогда, когда координаты взятых для ее построения двух точек - целые числа.

1. Если прямая определена общим уравнением Ax + By + C = 0 и , то для ее построения проще всего определить точки пересечения прямой с координатными осями.

Укажем, как определить координаты точек пересечения прямой с координатными осями. Координаты точки пересечения прямой с осью Ox находят из следующих соображений: ординаты всех точек, расположенных на оси Ox , равны нулю. В уравнении прямой полагают, что y равно нулю, и из полученного уравнения находят x . Найденное значение x и есть абсцисса точки пересечения прямой с осью Ox . Если окажется, что x = a , то координаты точки пересечения прямой с осью Ox будут (a , 0).

Чтобы определить координаты точки пересечения прямой с осью Oy , рассуждают так: абсциссы всех точек, расположенных на оси Oy , равны нулю. Взяв в уравнении прямой x равным нулю, из полученного уравнения определяют y . Найденное значение y и будет ординатой пересечения прямой с осью Oy . Если окажется, например, что y = b , то точка пересечения прямой с осью Oy имеет координаты (0, b ).

Пример. Прямая 2x + y - 6 = 0 пересекает ось Ox в точке (3, 0). Действительно, взяв в этом уравнении y = 0, получим для определения x уравнение 2x - 6 = 0, откуда x = 3.

Чтобы определить точку пересечения этой прямой с осью Oy , положим в уравнении прямой x = 0. Получим уравнение y - 6 = 0, из которого следует, что y = 6. Таким образом, прямая пересекает координатные оси в точках (3, 0) и (0, 6).

Если же в общем уравнении прямой C = 0, то прямая, определяемая этим уравнением, проходит через начало координат. Таким образом, уже известна одна ее точка, и для построения прямой остается только найти еще одну ее точку. Абсциссу x этой точки задают произвольно, а ординату y находят из уравнения прямой.

Пример. Прямая 2x - 4y = 0 проходит через начало координат. Вторую точку прямой определим, взяв, например, x = 2. Тогда для определения y получаем уравнение 2*2 - 4y = 0; 4y = 4; y = 1. Итак, прямая 2x - 4y = 0 проходит через точки (0, 0) и (2, 1).

Если прямая задана уравнением y = kx + b с угловым коэффициентом, то из этого уравнения уже известна величина отрезка b , отсекаемого прямой на оси ординат, и для построения прямой остается определить координаты еще только одной точки, принадлежащей этой прямой. Если в уравнении y = kx + b , то легче всего определить координаты точки пересечения прямой с осью Ox . Выше было указано, как это сделать.

Если же в уравнении y = kx + b b = 0, то прямая проходит через начало координат, и тем самым уже известна одна принадлежащая ей точка. Чтобы найти еще одну точку, следует дать x любое значение и определить из уравнения прямой значение y , соответствующее этому значению x .

Пример. Прямая проходит через начало координат и точку (2, 1), так как при x = 2 из ее уравнения .

Уравнение прямой, проходящей через данную точку в данном направлении. Уравнение прямой, проходящей через две данные точки. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых. Определение точки пересечения двух прямых

1. Уравнение прямой, проходящей через данную точку A (x 1 , y 1) в данном направлении, определяемом угловым коэффициентом k ,

y - y 1 = k (x - x 1). (1)

Это уравнение определяет пучок прямых, проходящих через точку A (x 1 , y 1), которая называется центром пучка.

2. Уравнение прямой, проходящей через две точки: A (x 1 , y 1) и B (x 2 , y 2), записывается так:

Угловой коэффициент прямой, проходящей через две данные точки, определяется по формуле

3. Углом между прямыми A и B называется угол, на который надо повернуть первую прямую A вокруг точки пересечения этих прямых против движения часовой стрелки до совпадения ее со второй прямой B . Если две прямые заданы уравнениями с угловым коэффициентом

y = k 1 x + B 1 ,

y = k 2 x + B 2 , (4)

то угол между ними определяется по формуле

Следует обратить внимание на то, что в числителе дроби из углового коэффициента второй прямой вычитается угловой коэффициент первой прямой.

Если уравнения прямой заданы в общем виде

A 1 x + B 1 y + C 1 = 0,

A 2 x + B 2 y + C 2 = 0, (6)

угол между ними определяется по формуле

4. Условия параллельности двух прямых:

а) Если прямые заданы уравнениями (4) с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:

k 1 = k 2 . (8)

б) Для случая, когда прямые заданы уравнениями в общем виде (6), необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.

5. Условия перпендикулярности двух прямых:

а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.

Разделы: Математика

Класс: 6

Тип урока: урок обобщения и систематизации знаний.

Методы: словесные, наглядные, парные, самостоятельной работы, фронтального опроса, контроля и оценки

Оборудование: интерактивная доска,карточки для самостоятельной работы

Цель: закрепить навыки нахождения координат отмеченных точек и строить точки по заданным координатам.

Задачи урока:

Образовательные:

  • обобщение знаний и умений учащихся по теме «Координатная плоскость»;
  • промежуточный контроль знаний и умений учащихся.

Развивающие:

  • развитие вычислительных навыков обучающихся;
  • развитие логического мышления;
  • развитие математически грамотной речи, кругозора учащихся;
  • развитие умения самостоятельной работы.

Воспитательные :

  • воспитание дисциплинированности при организации работы на уроке;
  • воспитание аккуратности при выполнении построений.

Структура урока:

  1. Организационный момент.
  2. Проверка домашнего задания.
  3. Актуализация опорных знаний.
  4. Диагностика усвоения знаний и умений учащихся.
  5. Подведение итогов урока.
  6. Домашнее задание.

ХОД УРОКА

1. Организационный момент

Сегодня мы с вами повторим то, что прошли в течение нескольких уроков. Вспомните, чем мы с вами занимались на уроках, какие темы изучали, что вас заинтересовало больше всего, что запомнилось, что осталось непонятным по теме «Координатная плоскость. Построение точки по ее координатам». Наша задача: повторить, обобщить, систематизировать знания теме «Координатная плоскость».

2. Проверка домашнего задания

А сейчас проверим, как вы выполнили домашнее задание. По заданным координатам вы должны были построить фигуру, соединяя, по мере построения, соседние точки друг с другом. В результате выполнения работы у вас должна была получиться фигура:


3. Актуализация опорных знаний

Задание «Разгадай кроссворд» поможет вспомнить основные понятия по теме «Координатная плоскость».
На экране интерактивной доски появляется кроссворд и учащимся предлагается решить его.

1. Две координатные прямые образуют координатную … (плоскость)
2. Координатные прямые - это координатные … (оси)
3. Какой угол образуется при пересечении координатных прямых? (прямой)
4. Как называется пара чисел, определяющих положение точки на плоскости? (координата)
5. Как называется первая координата? (абсцисса)
6. Как называется вторая координата? (ордината)
7. Как называется отрезок от 0 до 1? (единичный)
8. На сколько частей делится координатная плоскость координатными прямыми? (четыре)

4. Диагностика усвоения знаний и умений учащихся

На координатной плоскости отметьте точки:

А(-3; 0); В(2; -3); С(-4; 2); D(0; 4); E(1; 3); О(0; 0)

А теперь перейдем к построению фигуры с помощью точек на координатной плоскости.Даны координаты точек. Построить фигуру, соединяя, по мере построения, соседние точки друг с другом.

Самостоятельная работа.
(проверка методом взаимопроверки)

Вариант 1.

  1. (2; 9),
  2. (3; 8),
  3. (4; 9),
  4. (5; 7),
  5. (7; 6),
  6. (6; 5),
  7. (8; 3),
  8. (8; 4),
  9. (9; 4),
  10. (9; -1),
  11. (5; -2),
  12. (5; -1),
  13. (2; 2),
  14. (4; -6),
  15. (1; -6),
  16. (0; -3),
  17. (-4; -2),
  18. (-4; -6),
  19. (-7; -6),
  20. (-7; 2),
  21. (-8; 5),
  22. (-5; 2),
  23. (0; 2),
  24. (2; 9).

Глаз: (3; 5).

Вариант 2.

  1. (2; 4),
  2. (2; 6),
  3. (0; 6),
  4. (-1; 7),
  5. (-1; 9),
  6. (1; 11),
  7. (2; 11),
  8. (2,5; 12),
  9. (3; 11),
  10. (3,5; 12),
  11. (5; 10),
  12. (5; 9),
  13. (8; 8),
  14. (6; 8),
  15. (4; 7),
  16. (4; 5),
  17. (5; 5),
  18. (7; 3),
  19. (7; -1),
  20. (5; -3),
  21. (0; -4),
  22. (-3; -4),
  23. (-9; -1),
  24. (-9; 7),
  25. (-6; 2),
  26. (0; 2),
  27. (2; 4).

Крыло:
(2; 2),
(2; -2),
(-4; 0),

Глаз:
(2; 9).


5. Подведение итогов урока

Вопросы учащимся:

1) Что такое координатная плоскость?
2) Как называются координатные оси ОХ и ОУ?
3) Какой угол образуется при пересечении координатных прямых?
4) Как называется пара чисел, определяющих положение точки на плоскости?
5) Как называется первое число?
6) Как называется второе число?

6. Домашнее задание

  1. P(-1,5; 10),
  2. (-1,5; 11),
  3. (-2; 12),
  4. (-3; 12),
  5. (-3,5; 11),
  6. (-3,5; 10),
  7. (-5; 12),
  8. (-9; 14),
  9. (-14; 15),
  10. (-12; 10),
  11. (-10; 8),
  12. (-8; 7),
  13. (-4; 6),
  14. (-6; 6),
  15. (-9; 5),
  16. (-12; 3),
  17. (-14; 0),
  18. (-14; -2),
  19. (-12; -2),
  20. (-7; -1),
  21. (-3; 3),
  22. (-4; 1),
  23. (-3; 0),
  24. (-4; -1),
  25. (-2,5; -2),
  26. (-1; -1),
  27. (-2; 0),
  28. (-1; 1),

  1. (-2; 3),
  2. (2; -1),
  3. (7; -2),
  4. (9; -2),
  5. (9; 0),
  6. (7; 3),
  7. (4; 5),
  8. (1; 6),
  9. (-1; 6),
  10. (3; 7),
  11. (5; 8),
  12. (7; 10),
  13. (9; 15),
  14. (4; 14),
  15. (0; 12),
  16. (-1,5; 10).
  17. P (-3,5; 10),
  18. (-4; 6),
  19. (-3; 3),
  20. P (-1,5; 10),
  21. (-1; 6),
  22. (-2; 3).
  1. (-2; 11),
  2. (-3; 11)

Основные сведения о координатной плоскости

Каждый объект (например, дом, место в зрительном зале, точка на карте) имеет свой упорядоченный адрес (координаты), который имеет числовое или буквенное обозначение.

Математики разработали модель, которая позволяет определять положение объекта и называется координатной плоскостью .

Чтобы построить координатную плоскость нужно провести $2$ перпендикулярные прямые , на конце которых указываются с помощью стрелок направления «вправо» и «вверх». На прямые наносятся деления, а точка пересечения прямых является нулевой отметкой для обеих шкал.

Определение 1

Горизонтальная прямая называется осью абсцисс и обозначается х, а вертикальная прямая называется осью ординат и обозначается у.

Две перпендикулярные оси х и у с делениями составляют прямоугольную , или декартовую , систему координат , которую предложил французский философ и математик Рене Декарт.

Координатная плоскость

Координаты точки

Точка на координатной плоскости определяется двумя координатами.

Чтобы определить координаты точки $A$ на координатной плоскости нужно через нее провести прямые, которые будут параллельны координатным осям (на рисунке выделены пунктирной линией). Пересечение прямой с осью абсцисс дает координату $x$ точки $A$, а пересечение с осью ординат дает координату у точки $A$. При записи координат точки сначала записывается координата $x$, а затем координата $y$.

Точка $A$ на рисунке имеет координаты $(3; 2)$, а точка $B (–1; 4)$.

Для нанесения точки на координатную плоскость действуют в обратном порядке.

Построение точки по заданным координатам

Пример 1

На координатной плоскости построить точки $A(2;5)$ и $B(3; –1).$

Решение .

Построение точки $A$:

  • отложим число $2$ на оси $x$ и проведем перпендикулярную прямую;
  • на оси у отложим число $5$ и проведем перпендикулярную оси $y$ прямую. На пересечении перпендикулярных прямых получим точку $A$ с координатами $(2; 5)$.

Построение точки $B$:

  • отложим на оси $x$ число $3$ и проведем перпендикулярную оси х прямую;
  • на оси $y$ отложим число $(–1)$ и проведем перпендикулярную оси $y$ прямую. На пересечении перпендикулярных прямых получим точку $B$ с координатами $(3; –1)$.

Пример 2

Построить на координатной плоскости точки с заданными координатами $C (3; 0)$ и $D(0; 2)$.

Решение .

Построение точки $C$:

  • отложим число $3$ на оси $x$;
  • координата $y$ равна нулю, значит точка $C$ будет лежать на оси $x$.

Построение точки $D$:

  • отложим число $2$ на оси $y$;
  • координата $x$ равна нулю, значит, точка $D$ будет лежать на оси $y$.

Замечание 1

Следовательно, при координате $x=0$ точка будет лежать на оси $y$, а при координате $y=0$ точка будет лежать на оси $x$.

Пример 3

Определить координаты точек A, B, C, D.$

Решение .

Определим координаты точки $A$. Для этого проведем через эту точку $2$ прямые, которые будут параллельными к координатным осям. Пересечение прямой с осью абсцисс дает координату $x$, пересечение прямой с осью ординат дает координату $y$. Таким образом, получаем, что точка $A (1; 3).$

Определим координаты точки $B$. Для этого проведем через эту точку $2$ прямые, которые будут параллельными к координатным осям. Пересечение прямой с осью абсцисс дает координату $x$, пересечение прямой с осью ординат дает координату $y$. Получаем, что точка $B (–2; 4).$

Определим координаты точки $C$. Т.к. она расположена на оси $y$, то координата $x$ этой точки равна нулю. Координата у равна $–2$. Таким образом, точка $C (0; –2)$.

Определим координаты точки $D$. Т.к. она находится на оси $x$, то координата $y$ равна нулю. Координата $x$ этой точки равна $–5$. Таким образом, точка $D (5; 0).$

Пример 4

Построить точки $E(–3; –2), F(5; 0), G(3; 4), H(0; –4), O(0; 0).$

Решение .

Построение точки $E$:

  • отложим число $(–3)$ на оси $x$ и проведем перпендикулярную прямую;
  • на оси $y$ отложим число $(–2)$ и проведем перпендикулярную прямую к оси $y$;
  • на пересечении перпендикулярных прямых получаем точку $E (–3; –2).$

Построение точки $F$:

  • координата $y=0$, значит, точка лежит на оси $x$;
  • отложим на оси $x$ число $5$ и получим точку $F(5; 0).$

Построение точки $G$:

  • отложим число $3$ на оси $x$ и проведем перпендикулярную прямую к оси $x$;
  • на оси $y$ отложим число $4$ и проведем перпендикулярную прямую к оси $y$;
  • на пересечении перпендикулярных прямых получаем точку $G(3; 4).$

Построение точки $H$:

  • координата $x=0$, значит, точка лежит на оси $y$;
  • отложим на оси $y$ число $(–4)$ и получим точку $H(0; –4).$

Построение точки $O$:

  • обе координаты точки равны нулю, значит, точка лежит одновременно и на оси $y$, и на оси $x$, следовательно является точкой пересечения обеих осей (началом координат).

Покажем, как преобразуются линии, если в уравнение задания линии вводить знак модуля.

Пусть имеем уравнение F(x;y)=0(*)

· Уравнение F(|x|;y)=0 задаёт линию симметричную относительно оси ординат. Если уже построена данная линия, заданная уравнением (*), то оставляем часть линии справа от оси ординат, а затем симметричным образом достраиваем слева.

· Уравнение F(x;|y|)=0 задаёт линию симметричную относительно оси абсцисс. Если уже построена данная линия, заданная уравнением (*), то оставляем часть линии сверху от оси абсцисс, а затем симметричным образом достраиваем снизу.

· Уравнение F(|x|;|y|)=0 задаёт линию симметричную относительно осей координат. Если уже построена линия, заданная уравнением(*), то оставляем часть линии в первой четверти, а затем достраиваем симметричным образом.

Рассмотрим следующие примеры

Пример 1.

Пусть имеем прямую, заданную уравнением:

(1), где a>0, b>0.

Построить линии, заданные уравнениями:

Решение:

Сначала построим исходную прямую, а затем, используя рекомендации будем строить остальные линии.

х
у
а
b
(1)

(2)
b
-a
a
y
x
x
y
a
(3)
-b
b
x
y
-a
х
-a
b
(5)

a
-b

Пример 5

Изобразить на координатной плоскости область, заданную неравенством:

Решение:

Сначала строим границу области, заданную уравнением:

| (5)

В предыдущем примере мы получили две параллельные прямые, которые разбивают координатную плоскость на две области:

Область между прямыми

Область вне прямых.

Для выбора нашей области возьмём контрольную точку, например, (0;0) и подставим в данное неравенство: 0≤1 (верно)®область между прямыми, включая границу.

Обратите внимание, если неравенство будет строгим, то граница в область не входит.

Сохраним данную окружность и построим симметричную относительно оси ординат. Сохраним данную окружность и построим симметричную относительно оси абсцисс. Сохраним данную окружность и построим симметричную относительно оси абсцисс. и оси ординат. В результате получим 4 круга. Заметим, что центр круга в первой четверти (3;3), а радиус R=3.
у
-3

х
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.