Физико химический процесс сопровождающийся выделением тепла дыма. Горение - сложный химический процесс. Системы предотвращения пожара

Системы предотвращения пожара

Целью создания систем предотвращения пожаров является исключение условий возникновения пожаров. Исключение условий возникновения пожаров достигается исключением условий образования горючей среды и (или) исключением условий образования в горючей среде (или внесения в нее) источников зажигания.

Определения и термины

Пожар - неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

Горение - это физико-химический процесс, сопровождающийся выделением тепла, света и продуктов сгорания (дыма). Приближенно можно описать природу горения как бурно идущее окисление.

Для того, чтобы произошло возгорание, необходимо наличие трех условий (так называемый Пожарный треугольник):

Горючая среда.

Источник зажигания - открытый огонь, химическая реакция, электроток.

Наличие окислителя, например, кислорода воздуха.

Сущность горения заключается в следующем: нагревание источников зажигания горючего материала до начала его теплового разложения. В процессе теплового разложения образуется угарный газ, вода и большое количество тепла. Выделяются также углекислый газ и сажа, которая оседает на окружающем рельефе местности. Время от начала зажигания горючего материала до его воспламенения называется временем воспламенения.

К опасным факторам пожара, воздействующим на людей и имущество, относятся:

1) пламя и искры;

2) тепловой поток;

3) повышенная температура окружающей среды;

4) повышенная концентрация токсичных продуктов горения и термического разложения;


5) пониженная концентрация кислорода;

6) снижение видимости в дыму.

К сопутствующим проявлениям опасных факторов пожара относятся:

1) осколки, части разрушившихся зданий, сооружений, строений, транспортных средств, технологических установок, оборудования, агрегатов, изделий и иного имущества;

2) радиоактивные и токсичные вещества и материалы, попавшие в окружающую среду из разрушенных технологических установок, оборудования, агрегатов, изделий и иного имущества;

3) вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов, изделий и иного имущества;

4) опасные факторы взрыва, происшедшего вследствие пожара;

5) воздействие огнетушащих веществ.

Из перечисленных выше факторов, воздействующих на людей, чаще всего на пожарах приходится встречаться с дымом и высокой температурой.

Продукты сгорания и разложения, выделяемые на пожаре, являются составными частями дыма.

Основные причины пожаров

Основными причинами пожаров являются:

1. Электротехнические причины:

- Возгорание в результате короткого замыкания , возникающего (в результате повреждения изоляции электропроводов; применение низковольтных проводов «телефонных и т. п.» для силовых и осветительных электросетей; перехода напряжения с электроустановок с высоким напряжением на электроустановки с низким напряжением; схлестывания проводов воздушных линий электропередач; проявление грозовых разрядов молнии).

- Возгорание в результате токовых перегрузок, возникающих в обмотках электродвигателей, аппаратов, в проводах и кабелях при нагрузках превышающих допустимые значения.

- Возгорание в результате образования больших переходных сопротивлений, в местах перехода электрического тока с одной контактной поверхности на другую через площадки их соприкосновения (неплотное соединение токопроводящих элементов, соединения электропроводов «механической» скруткой , соединения электропроводов состоящих из разных металлов – медь и алюминий).

- Возгорание в результате нарушения эксплуатации электронагревательных приборов (установка их на сгораемые поверхности, без использования защитных негорючих теплоизоляционных материалов , не обеспечивая разделки (отступки) от горючих материалов), использование самодельных электронагревательных приборов.

- Возгорание в результате перегорания нити накаливания электролампы с разрушением её колбы, при перенапряжении в электросети, технического брака лампы, в результате чего остатки раскаленной нити накаливания (t-1640 0С) попадая на сгораемые материалы, воспламеняют их (для примера t воспламенения хлопчатобумажной ткани - 2450С, а древесины - 2650С).

2. Неосторожное обращение с огнем (использование открытого огня, тлеющие табачные изделия и др.).

В данной главе приведены основные аспекты, касающиеся понятий, терминов и определений, применяемых в теории горения и взрыва. Также рассмотрены вопросы, связанные с условиями возникновения и развития процессов горения, и ставится акцент на плавном подведении обучающихся к основам теплового и цепного механизмов воспламенения и горения.

Рассматриваются особенности турбулентного и гетерогенного типов горений и образование диффузионных пламен при этих процессах.

Изучаются формы и особенности диффузионных пламен, их излучательная способность, температура пламени, электрофизические свойства и электропроводность пламени.

Особое внимание в данной главе уделено вопросам пи- роза органических и неорганических соединений в пламени, так как эти вопросы, но мнению авторов учебного пособия, имеют важное значение в современных условиях, когда в результате пожара различной сложности при пиролизе образуется ряд токсичных продуктов и синтезируются высокотоксичные соединения, пагубно влияющие на окружающую среду обитания и на человека. Рассмотрены и прикладные вопросы, связанные с теплотворной способностью горючих, их полнотой сгорания и скоростью горения.

В результате изучения данной главы обучающиеся должны знать:

  • а) что понимается под терминами горения и взрыва;
  • б) в чем заключается физика и химия горения;
  • в) обязательные условия возникновения горения и взрыва;
  • г) классификацию видов и типов горения;
  • д) отличительные особенности тепловой и цепной теорий воспламенения;
  • е) отличительные особенности турбулентного, нормального и гетерогенного горений;
  • ж) условия перехода горений в кинетический режим и диффузионную область;
  • з) особенности горения частиц в зависимости от их размеров;
  • и) излучательные свойства пламен, их температурные диапозоны, электрофизические свойства пламен и их электропроводность;
  • к) особенности пиролиза органических и неорганических соединений в пламенах;
  • л) разложение органических и неорганических соединений и превращения при разложении;
  • м) теплотворные способности горючих, их полноту сгорания, а также скорости их горения;
  • а) использовать полученные знания при дальнейшем знакомстве с материалом, изложенном в учебном пособии;
  • б) использовать полученные знания при моделировании и прогнозировании опасных процессов в техносфере;
  • в) решат!) практические задачи, связанные с горением газов, жидких и твердых горючих систем;
  • а) методологическими основами механизмов возникновения горения как сложного физико-химического процесса;
  • б) основами механизмов и процессов, влияющих на пиролиз и разложение органических и неорганических соединений в пламенах.

Основные понятия и определения, применяемые в теории горения и взрыва

Процессам горения посвящены многочисленные работы отечественных и зарубежных ученых, исследователей и инженеров. Основоположником современной общепринятой тепловой модели горения является наш соотечественник В. А. Михельсон. Η. Н. Семёнов предложил теорию разветвленных цепных реакций, которая послужила основой научных положений о механизме горения. Широко известны работы Н. Н. Семёнова, В. Н. Кондратьева, Η. М. Эмануэля в области кинетики химических реакций. Я. Б. Зельдовичем и Д. Л. Франк-Каменецким рассмотрены основные теоретические вопросы горения. А. С. Предводителевым и другимн исследователями созданы современные представления о горении углерода. Большой вклад в изучение механизма и закономерностей горения конденсированных систем внесли А. Ф. Беляев, К. К. Андреев, Π. Ф. Похил, О. И. Лейпунский и др.

Под горением понимают быстрый физико-химический окислительно-восстановительный процесс с выделением тепла , способный к самораспространению и часто сопровождающийся свечением и образованием пламени. Классические примеры горения связаны с реакциями окисления органических веществ или углерода кислородом воздуха: горение каменного угля, нефти, дров и т.п.

Процесс горения является сложным и состоит из многих связанных между собой отдельных процессов, как физических, так и химических. Физика горения сводится к процессам тепломассообмена и переноса в реагирующей системе. Химия горения заключается в протекании окислительно- восстановительных реакций, состоящих обычно из целого ряда элементарных актов и связанных с переходом электронов от одних веществ к другим – от восстановителя к окислителю.

Окислительно-восстановительные реакции горения могут быть межмолекулярными и внутримолекулярными. Межмолекулярные реакции протекают с изменением степени окисления атомов в разных молекулах. Внутримолекулярные реакции горения протекают с изменением степени окисления разных атомов в одной и той же молекуле (обычно это реакции термического разложения веществ).

Горение – относительно быстрый процесс. Поэтому к горению относят не все окислительно-восстановительные реакции. Медленные реакции (низкотемпературное окисление, биохимическое окисление) и слишком быстрые (взрывчатое превращение) не входят в понятие горения. Горение обусловливают реакции, время протекания которых обычно измеряется секундами или, чаще, долями секунд.

Горение сопровождается выделением тепла. Поэтому к горению приводят не любые относительно быстро протекающие реакции, а те, которые в совокупности являются экзотермическими. Реакции, идущие с затратой тепла извне, не относятся к горению. Горение – самоподдерживающийся за счет выделения энергии процесс. Поэтому горение обусловливают не любые экзотермические реакции, а лишь те, суммарная теплота которых достаточна для того, чтобы процесс стал способным к самораспространению. На практике используют реакции горения, теплота которых, кроме того, достаточна для получения того или иного полезного эффекта.

С учетом изложенного, в понятие горения в широком смысле можно включить самые разнообразные химические реакции между элементами и их соединениями, включая реакции распада соединений. Горение происходит не только за счет образования оксидов, но также за счет образования фторидов, хлоридов и нитридов. Известно горение при образовании боридов, карбидов и силицидов ряда металлов. Выделение тепла и развитие процесса горения могут также происходить при образовании сульфидов и фосфидов некоторых элементов. Все это свидетельствует о разнообразии возможных реагентов, участвующих в горении, и химических процессов между ними.

Энергия, выделяющаяся при горении в результате протекания химических реакций, расходуется на поддержание процесса горения, создание эффекта, а также рассеивается в окружающее пространство. Стационарное горение наступает при равенстве теплоприхода и теплорасхода на подготовку к горению очередных порций вещества.

В процессе горения, так же как и в других химических процессах, обязательны два этапа: создание молекулярного контакта между реагентами и само взаимодействие молекул с образованием продуктов реакции. Скорость превращения исходных продуктов в конечные зависит от скорости смешивания реагентов путем молекулярной и турбулентной диффузии и от скорости химических реакций. В предельном случае характеристики горения могут определяться только скоростью химического взаимодействия, т.е. кинетическими константами и факторами, влияющими на них (кинетический режим горения), или только скоростью диффузии и факторами, влияющими на нее (диффузионный режим горения).

Вещества, участвующие в горении, могут быть в газообразном, жидком (или загущенном) и твердом состояниях, предварительно перемешаны между собой или не перемешаны. Если в горючей системе отсутствуют поверхности раздела между реагентами, то такую систему называют гомогенной, если имеются поверхности раздела, систему называют гетерогенной.

Горение часто сопровождается свечением продуктов сгорания и образованием пламени. Под пламенем понимают газообразную среду, в ряде случаев включающую диспергированные конденсированные продукты, в которой происходят физико-химические превращения реагентов. Для газообразных систем весь процесс горения протекает в пламени, поэтому часто понятия "горение" и "пламя" используют как синонимы. При горении конденсированных систем часть физико-химических превращений (нагревание, плавление, испарение, начальное разложение и взаимодействие реагентов) может происходить вне пламени непосредственно в исходном образце и на его поверхности. Известно беспламенное горение, когда процесс протекает только в конденсированной системе практически без газообразования и диспергирования (горение некоторых термитов и смесей металлов с неметаллами). Пламя или часть его, как правило, характеризуется видимым излучением, хотя известны и прозрачные пламена. Наиболее высокотемпературную часть пламени обычно называют основной реакционной зоной, поверхностью пламени или фронтом пламени.

После инициирования процесса горения в какой-либо части объема реагентов процесс распространяется по всему объему. В отличие от взрыва процесс горения распространяется в реагирующей среде со скоростью, не превышающей скорость звука.

Если реагенты перед началом горения небыли перемешаны, то горение и пламя называют диффузионными, так как смешение горючего с окислителем достигается путем диффузии. Простейшими примерами являются пламя обычной свечи и пламена, образующиеся при смешении двух газообразных потоков реагентов, один из которых окислитель, а другой – горючее.

Если же реагенты предварительно перемешаны (гомогенная смесь), процесс горения называют горением предварительно перемешанных смесей, или гомогенным горением, а образующееся пламя – предварительно перемешанным. Примерами могут служить горение смесей водорода, оксида углерода и углеводородов с кислородом или воздухом. Надо учесть, однако, что в технике при горении не всегда выполняется условие полного предварительного перемешивания реагентов и возможны переходные между гомогенным и диффузионным режимы горения.

Гетерогенное горение происходит на поверхности раздела фаз. Одно из реагирующих веществ находится в конденсированной фазе, другое (обычно кислород) доставляется посредством диффузии из газовой фазы. При этом конденсированная фаза должна иметь высокую температуру кипения, чтобы при температуре горения практически не происходило ее испарения. Примерами гетерогенного горения служат горение угля, нелетучих металлов. В зависимости от характера течения газового потока, образующего пламя, различают ламинарные и турбулентные пламена. В ламинарных пламенах течение ламинарное, или слоистое, все процессы массообмена и переноса происходят путем молекулярной диффузии и конвекции. В турбулентных пламенах течение турбулентное, процессы массообмена и переноса осуществляются за счет не только молекулярной, но и турбулентной диффузии (в результате макроскопического вихревого движения). Характеристики горения разнообразны. Их можно подразделить на следующие группы: 1) форма, размер и структура пламен; 2) излучение, температура пламени и ионизация продуктов горения; 3) тепловыделение и полнота сгорания; 4) скорость горения и пределы устойчивого горения. Характеристики горения могут изменяться в широких пределах в зависимости от свойств горючей системы и условий горения.

Известны следующие виды горения: горение газообразных жидких и твердых веществ и их смесей за счет взаимодействия с окружающей газообразной средой или с потоком этой среды; горение соединений за счет экзотермического распада и горение твердых гомогенных топлив за счет внутримолекулярного окисления.

Для создания максимальных эффектов: реактивной тяги, ионизации продуктов сгорания (плазмы), видимого и селективного излучения, воздействия на материалы и состояние атмосферы – в практике применяют разнообразные рецептуры смесей реагентов. Такими смесями являются порох, твердые и жидкие ракетные топлива, различные по назначению пиротехнические составы и термитные смеси.

Вещества, используемые в качестве горючего, многочисленны. Однако, по нашему мнению, многие закономерности горения могут быть описаны и выявлены при рассмотрении горения водорода, оксида углерода, углерода, простейших углеводородов и нескольких высокотеплотворных металлов в различных активных средах. Другие вещества разлагаются или газифицируются на первоначальных стадиях горения в основном с образованием перечисленных выше продуктов.

При горении происходят разнообразные сложные химические процессы:

  • 1) разложение исходных соединений (углеводородов, элементоорганических соединений, нитросоединений, неорганических окислителей);
  • 2) превращение продуктов разложения (образование углерода в пламени, реакции метана и водяного газа);
  • 3) окисление (водорода, оксида углерода, углерода, простейших углеводородов, металлических горючих) и образование конденсированных оксидов металлического горючего;
  • 4) диссоциация продуктов сгорания;
  • 5) ионизация продуктов сгорания.

Взрывом принято называть крайне быстрое выделение большого количества энергии, связанное с внезапным изменением состояния вещества, сопровождаемое разрушением и разбрасыванием окружающей среды, возникновением и распространением в ней так называемой ударной волны.

Для взрыва характерны три обязательных условия (фактора):

  • 1) экзотермичность реакции;
  • 2) высокая скорость протекания реакции (время реакции составляет 10-4–10-7 с);
  • 3) большое давление газообразных продуктов, которые в процессе расширения совершают механическую работу.

С первого взгляда определение настолько просто и понятно, что кажется даже малосодержательным. Однако при более внимательном подходе оказывается, что в нем простота и ясность сочетаются с глубоким анализом явления взрыва.

Прежде всего выясним, что значит "очень быстрое" выделение энергии. Быстрота тех или иных явлений – понятие относительное. Следовательно, очень быстрое выделение энергии взрыва должно сравниваться с другими видами выделения или преобразования энергии.

Таким образом, выделение энергии при взрыве является существенно более быстрым, чем другие формы выделения энергии в сходных условиях. Например, выделение энергии при взрыве происходит значительно быстрее, чем выделение энергии при горении. Наиболее важным при взрыве является то, что энергия выделяется в пределах заряда взрывчатого вещества быстрее, чем она потом передается окружающей среде.

Что означает "большое количество" энергии? Это определение надо рассматривать, сравнивая энергию взрыва с той энергией, которая, так или иначе, содержится в среде, окружающей место взрыва. В этом определении важно то, что выделяющаяся при взрыве энергия намного больше энергии, содержащейся в окружающей среде.

Необходимо также уточнить понятие "выделение энергии". Как известно, энергия не может возникать из ничего или исчезать бесследно. Поэтому под выделением энергии понимают превращение в энергию взрыва соответствующего запаса энергии, которая накоплена и находится в скрытой, потенциальной форме в том или ином месте.

До момента взрыва обычного взрывчатого вещества энергия взрыва содержится в скрытой, потенциальной форме в его молекулах, точнее, в электронных оболочках этих молекул. Однако простое выделение энергии еще не означает, что произошел взрыв. Понятие "взрыв" связано с сильным механическим действием, т.е. с появлением механических сил, приложенных к среде и отдельным телам, окружающим место взрыва. Если этого нет, то нет и взрыва.

Чтобы выделившаяся энергия могла осуществить механическое действие, нужно рабочее тело, т.е. вещество, которое могло бы произвести достаточно большое давление на окружающую среду. С этой точки зрения взрыв может рассматриваться как результат работы очень мощного теплового двигателя, действующего в течение весьма малого времени. При этом газы, будучи в начале сильно нагретыми и сжатыми, расширяются и производят механическую работу, перемещая среду, окружающую место взрыва.

Чтобы обеспечить сильное нагревание выделившихся при взрыве 1330В и создать в них высокое давление, необходимо, чтобы энергия либо выделилась в этих газах, либо была передана им до того, пока еще не произошло заметных потерь энергии и заметного увеличения их объема. Это значит, что процесс выделения или передачи энергии должен распространяться со скоростью, заметно превосходящей скорость расширения взрывных газов.

Обычно при взрыве начальная скорость расширения газов достигает около 1 км/с. Скорость распространения процесса взрыва, называемого детонацией, у взрывчатых веществ несколько больше и находится в пределах от 2 до 8 км/с.

При взрыве какого-либо взрывчатого вещества, например тротила, происходит его преобразование в раскаленные взрывные газы, имеющие высокое давление. При этом энергия выделяется первоначально в виде теплоты, заключенной в сильно сжатых газах. Газы действуют на окружающую среду с такой силой, что эта среда начинает сжиматься и перемещаться. Поэтому газы получают возможность расширяться, производя работу подобно газам, движущим поршень двигателя внутреннего сгорания, но с тем отличием, что взрывные газы раздвигают окружающую среду по всем возможным направлениям, а газы двигателя внутреннего сгорания двигают поршень только но оси цилиндра. При расширении газы интенсивно охлаждаются, их давление быстро падает и энергия передается окружающей среде с очень большим коэффициентом полезного действия.

Менее мощные взрывы могут происходить и без выделения энергии в результате каких-либо реакций или ее принесения извне. Причиной этого вида взрывов может быть внезапное разрушение сосуда, содержащего сильно сжатый газ или пар. Примером таких взрывов являются взрывы баллонов со сжатым воздухом или иными газами, взрывы паровых котлов.

Взрывообразный характер имеет разрушение сильно сжатых хрупких тел, сопровождающееся интенсивным разлетом их кусков. Так разрушаются, например, массивные стеклянные шары, сжимаемые гидравлическим прессом.

Взрывом обычно заканчиваются очень сильные удары быстродвижущихся тел о прочные преграды. Такие взрывы происходят при ударе метеорита о поверхность земли.

Следовательно, явление взрыва является по своей природе сложным физико-химическим процессом, протекающим за очень короткий промежуток времени, равный долям миллисекунды, и поэтому существуют определенные сложности в его экспериментальном и научном изучении. Более детально механизмы возникновения взрывчатых превращений и некоторые математические зависимости, описывающие эти закономерности и механизмы возникновения взрыва, будут рассмотрены в главе 4 данного пособия.

Под пожарной опасностью понимают совокупность условий, способствующих возникновению и развитию пожара, а также определяющих его продолжительность и размеры.

Для оценки пожарной опасности веществ и материалов необходимо знать основы процесса горения.

Горением называется физико-химический процесс, сопровождающийся выделением тепла и излучением света.

Горением может быть всякая экзотермическая химическая реакция, как соединения веществ, так и их разложения. Например, взрыв ацетилена – это реакция его разложения.

Для процесса горения необходимы определённые условия: горючее вещество, способное самостоятельно гореть после удаления источника зажигания, воздух (кислород), а также источник воспламенения, обладающий определённой температурой и достаточным запасом теплоты. Если одно из этих условий отсутствует, процесса горения не будет. Так называемый пожарный треугольник (кислород воздуха, теплота, горючее вещество) может дать простейшее представление трех факторов, необходимых для существования пожара.

Символический пожарный треугольник, изображенный на рис. 21 наглядно иллюстрирует это положение и дает представление о важных факторах, необходимых для предотвращения и тушения пожаров:

Если одна из сторон треугольника отсутствует, пожар не может начаться;

Если одну из сторон треугольника исключить, пожар погаснет.

Однако, пожарный треугольник – простейшее представление о трех факторах, необходимых для существования пожара, не полностью поясняет природу пожара. В частности, он не включает цепную реакцию, возникающую между горючим веществом, кислородом и теплотой в результате химической реакции. Пожарный тетраэдр (рис. 22) – более наглядная иллюстрация процесса сгорания (тетраэдр – это многоугольник с четырьмя треугольными гранями). Он позволяет понять процесс сгорания, так как в нем имеется место для цепной реакции и каждая грань касается трех других. Основная разница между пожарным треугольником и пожарным тетраэдром заключается в том, что тетраэдр показывает, каким образом за счет цепной реакции поддерживается пламенное горение – грань цепной реакции удерживает остальные три грани от падения. Этот важный фактор используется во многих современных переносных огнетушителях, автоматических системах тушения пожаров и предотвращения взрывов – огнетушащие вещества оказывают воздействие на цепную реакцию и прерывают процесс ее развития.

Пожарный тетраэдр дает наглядное представление о том, каким образом можно потушить пожар. Если убрать горючее вещество, или кислород, или источник теплоты, пожар прекратится.

Если цепная реакция будет прервана, то в результате последующего уменьшения образования паров и выделения тепла пожар также будет потушен. Однако, при наличии тления или возможности повторной вспышки необходимо обеспечить дальнейшее охлаждение.

Горючее вещество может находиться в любом агрегатном состоянии (твердом, жидком, газообразном). Источником воспламенения может быть пламя, искра, накаленное тело и тепло, выделяющееся в результате химической реакции, при механической работе, электрической дуги между проводниками и т. д.

После возникновения горения постоянным источником воспламенения является зона горения, т.е. область, где происходит реакция с выделением тепла и света.

Горение возможно при определённом количественном соотношении горючего вещества и окислителя. Например, при пламенном горении веществ в воздухе зоны горения концентрация кислорода должна быть не ниже 16 …18 %. Горение прекращается при снижении содержания кислорода в воздухе ниже 10…12%. Однако тление может происходить и при содержании в воздухе около 3 % кислорода.

Исключением являются вещества (в основном взрывчатые), горение которых происходит за счет окислителей, входящих в их состав. Молекулы таких веществ как хлораты, нитраты, хроматы, окиси, перекиси и др. содержат свободные атомы кислорода. При нагревании, а иногда при соприкосновении с водой, они выделяют кислород, который поддерживает горение.

Взрыв – это частный случай горения. В соответствии с ГОСТ 12.1.010-76ССБТ взрывом считается быстрое экзотермическое химическое превращение взрывоопасной среды, сопровождающееся выделением энергии и образованием сжатых газов, способных проводить работу. Газы, быстро расширяясь, создают огромное давление на окружающую среду, в которой возникает воздушная сферическая волна, движущаяся с большой скоростью. При определенных условиях опасность взрыва могут представлять смеси газов, паров и пыли с воздухом. Условия для возникновения взрыва – это наличие определённой концентрации газо-, пыле- или паро-воздушной смеси и импульса (пламя, искра, удар), способного нагреть смесь до температуры самовоспламенения. Предотвращение образования взрывоопасной смеси в производственных помещениях достигается:

· применением рабочей и аварийной вентиляции;

· отводом, удалением взрывоопасной среды и веществ, способных привести к её образованию;

· контролем состава воздушной среды и отложений взрывоопасной пыли (ГОСТ 12.1.010 – 76 п. 2.4).

При рассмотрении вопроса взрывобезопасности электроустановок, размещаемых во взрывоопасных зонах внутри и вне помещений, следует руководствоваться главой 7.3 Правил устройства электроустановок (ПУЭ).

Горение - это сложный химический процесс, который может протекать не только при окислении веществ кислородом, но и при соединении их с многими другими веществами. Например, фосфор, водород, измельченное железо (опилки) горят в хлоре, карбид щелочных металлов воспламеняются в атмосфере хлора и двуокиси углерода, медь горит в парах серы и т. д.

Разные по химическому составу вещества горят неодинаково. Например, воспламеняющиеся жидкости выделяют теплоту в 3…10 раз быстрее чем дерево, поэтому обладают высокой пожароопасностью.

Независимо от первоначального агрегатного состояния большинство горючих веществ при нагревании переходит в газообразную фазу и, смешиваясь с кислородом воздуха, образует горючую среду. Этот процесс называется пиролизом. При горении веществ выделяются углекислый газ, окись углерода и дым. Дым представляет собой смесь мельчайших твердых частиц веществ - продуктов горения (угля, золы). Углекислый газ, или углекислота, является инертным газом. При значительной концентрации его в помещении (8 - 10 % по объему) человек теряет сознание и может умереть от удушья. Окись углерода - бесцветный газ без запаха, обладающий сильным отравляющим свойством. При объемной доле его в воздухе помещения от 1 % и выше почти мгновенно наступает смерть.

Пожароопасные свойства горючих веществ определяются рядом характерных показателей.

Вспышка - это быстрое сгорание смеси паров вещества с воздухом при поднесении к ней открытого огня. Самая низкая температура горючего вещества, при которой над его поверхностью образуются пары или газы, способные вспыхивать в воздухе от внешнего источника зажигания, называется температурой вспышки. Температура вспышки, определяемая в условиях специальных испытаний, является показателем, ориентировочно определяющим тепловой режим, при котором горючее вещество становится опасным.

Воспламенением называют горение, возникающее под воздействием источника зажигания и сопровождающееся появлением пламени. Температура горючего вещества, при которой после воспламенения возникает устойчивое горение, называется температурой воспламенения.

Самовоспламенением называют возгорание вещества без подведения к нему источника зажигания, сопровождающееся появлением пламени. Самая низкая температура, при которой начинается этот процесс, т. е. когда медленное окисление переходит в горение, называется температурой самовоспламенения. Эта температура значительно выше температуры его воспламенения.

Способность некоторых веществ, называемых пирофорными (растительные продукты, уголь, сажа, промасленная ветошь, различные предметы судового снабжения и т. д.), самовозгораться при тепловых, химических или микробиологических процессах учитывается при разработке пожарно-профилактических мероприятий.

Физико-химические свойства всех опасных веществ, способных самовозгораться при смешении одного с другим, при контакте вещества с другими активными веществами и пр. изложены в Правилах морской перевозки опасных грузов (МОПОГ), которые используются в морской практике. При перевозке опасных грузов все члены экипажа инструктируются по соблюдению мер предосторожности при обращении с конкретными перевозимыми веществами.

Интенсивность горения зависит и от физического состояния вещества. Измельчённые и распылённые вещества горят более интенсивно, чем массивные и плотные.

Промышленная пыль представляет значительную пожарную опасность. Имея большую поверхность и электроёмкость, она способна приобретать заряды статического электричества в результате движения, трения и ударов пылинок друг о друга, а также о частицы воздуха. Поэтому при обработке сыпучих грузов необходимо принимать противопожарные меры согласно инструкциям.

По степени возгораемости все вещества и материалы разделяют на четыре категории: несгораемые, трудно сгораемые, трудновоспламеняемые (само затухающие) и сгораемые.

Воспламеняющиеся жидкости условно подразделяют на три разряда в зависимости от температуры вспышки, определяемой в условиях специальных лабораторных испытаний: 1 – имеющие температуру вспышки паров ниже 23 о С; 2 – имеющие температуру вспышки паров в диапазоне от 23 о С до 60 о С; 3 – имеющие температуру вспышки паров выше 60 о С.

Воспламеняющиеся жидкие грузы подразделяются на легко воспламеняющиеся жидкости (ЛВЖ) и горючие жидкости (ГЖ).

Легко воспламеняющиеся жидкости, в свою очередь, разделяются на три категории в зависимости от температуры вспышки и пожаробезопасности (особо опасные, постоянно опасные, опасные при повышенной температуре воздуха).

Для перевозки сжиженных горючих газов, большинство которых являются опасными в пожарном отношении, на флоте широкое распространение получают специализированные суда.

Опасность, возникающая при перевозке грузов на судах в грузовых резервуарах и сосудах под давлением, определяется по пределам воспламенения их в воздухе. Горючими называются газы, воспламеняющиеся в воздухе при определённых условиях. Газы, не воспламеняющиеся в воздухе, называются негорючие.

При оценке пожарной опасности твёрдых веществ важно знать группу возгораемости и температуру воспламенения. Для веществ имеющих низкую температуру плавления – 573 К и ниже, необходимо также определять температуру вспышки и пределы воспламенения паров в воздухе. При подготовке материалов и веществ к хранению и транспортировке необходимо предварительно тщательно ознакомиться с их физико-химическими свойствами, выявить возможность их изменения с течением времени, при контактах с другими веществами, нагреве, облучении и при других внешних воздействиях.


Похожая информация.


Горе́ние - сложный -химический процесс

Горение - это интенсивные химические окислительные реакции, которые сопровождаются выделением тепла и свечением. Горение возникает при наличии горючего вещества, окислителя и источника воспламенения. В качестве окислителей в процессе горения могут выступать кислород, азотная кислота, пероксид натрия, бертолетова соль, перхлораты, нитросоединения и др. В качестве горючего - многие органические соединения, сера, сероводород, колчедан, большинство металлов в свободном виде, оксид углерода, водород и т. д.

Горе́ние - сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе , сопровождающийся интенсивным выделением . Химическая энергия, запасённая в компонентах исходной смеси, может выделяться также в виде и света. Светящаяся зона называется фронтом пламени или просто .

сыграло ключевую роль в развитии человеческой цивилизации. открыл людям возможность приготовления пищи и обогрева жилищ, а впоследствии - развития и создания новых, более совершенных инструментов и технологий.

Горение до сих пор остаётся основным источником энергии в мире и останется таковым в ближайшей обозримой перспективе. В 2010 году примерно 90 % всей энергии, производимой человечеством на Земле, добывалось сжиганием или , и, по прогнозам , эта доля не упадёт ниже 80 % до 2040 года при одновременном росте энергопотребления на 56 % в период с 2010 по 2040 год . С этим связаны такие современной цивилизации, как истощение , окружающей среды и .

Особенности горения, отличающие его от прочих видов , - это большой и большая , приводящая к сильной зависимости скорости реакции от температуры. Реакции горения, как правило, идут по разветвлённо-цепному механизму с прогрессивным самоускорением за счёт выделяющегося в реакции тепла. Вследствие этого горючая смесь, способная храниться при комнатной температуре неограниченно долго, может воспламениться или при достижении критической температуры воспламенения ( ) или при инициировании внешним источником энергии (вынужденное воспламенение, или зажигание).

Если продукты, образующиеся при сгорании исходной смеси в небольшом объёме за короткий промежуток времени, совершают значительную механическую работу и приводят к ударным и тепловым воздействиям на окружающие объекты, то это явление называют взрывом. Процессы горения и взрыва составляют основу для создания , , и различных видов обычных вооружений.

Горение – сложный физико‑химический, быстро протекающий процесс, который сопровождается выделением значительного количества тепла и ярким свечением.

Горение происходит в результате окисления вещества, способного к горению (горючего), окислителем (кислородом воздуха, хлором).

Виды возгорания: вспышка, воспламенение, самовоспламенение, самовозгорание.

Горение – это комплекс взаимосвязанных химических и физических процессов.

Свойство горения – это способность возникшего очага пламени перемещаться по всей горючей смеси путем передачи тепла из зоны горения в свежую смесь.

Источники зажигания – это искры, пламя, накаленные предметы, трение, удар.

Для возникновения процесса горения характерно наличие критических условий (по составу смеси, давлению, температуре, геометрическим размерам системы) возникновения и распространения пламени.

Для горения характерны три типичные стадии: возникновение, распространение b погашение пламени.

В зависимости от состояния горючего и окислителя различают три вида горения:

Гомогенное горение газов в среде газообразного окислителя;

Гетерогенное горение жидких b твердых горючих веществ в среде газообразного окислителя;

Горение взрывчатых веществ.

Окислителем является кислород воздуха. Окислителями могут быть фтор, бром, сера, которые при нагревании разлагаются с выделением кислорода.

Вспышка – быстрое сгорание смеси газов с воздухом, которое может возникнуть от соприкосновения смеси с пламенем, искрой, без перехода в горение. На вспышке горение прекращается, так как успевают сгореть только пары.

Воспламенение – это процесс, при котором вещество нагревается до температуры кипения и горит, пока происходит выделение летучих углеводородов.

Самовоспламенение – процесс, когда вещество нагревается от постороннего источника теплоты, постоянно переходя в самонагревание.

Самовозгорание – процесс самонагрева и последующего возгорания вещества без воздействия открытого источника зажигания. Чем ниже температура, при которой происходит процесс самовозгорания, тем вещество более опасно. Процесс самовозгорания может начаться уже при температуре 10‑20 оС.

Самовозгорающиеся вещества делятся на три группы: самовозгорающиеся от воздействия воздуха (растительные масла), вызывающие горение при воздействии на них воды (карбид кальция), самовозгорающиеся при взаимодействии с другими веществами (при контакте веществ).

Пожаро– и взрывоопасность газов характеризуется следующими показателями: концентрационными пределами распространения пламени, минимальной энергией зажигания, температурой горения и скоростью распространения пламени.

Горение бывает двух видов: полное и неполное.

Полное горение происходит при избыточном количестве кислорода и сопровождается образованием паров воды и диоксида углерода.

Неполное горение очень опасно, так как происходит при недостатке кислорода, при этом образуется токсичный оксид углерода.

Два режима горения: первый режим, в котором горючее вещество образует однородную смесь с воздухом до начала горения, второй режим, в котором горючее вещество и окислитель первоначально разделены, а горение протекает в области их перемешивания (диффузионное горение).

Тепловой поток, который поступает из зоны горения к твердому горючему, зависит от энергии, которая выделяется в процессе горения и от условий теплообмена между зоной горения и поверхностью твердого горючего. В этих условиях режим и скорость горения могут зависеть от физического состояния горючего вещества, его распределения в пространстве и характеристик окружающей среды.

В зависимости от скорости распространения пламени горение может происходить в форме дефлаграционного горения, взрыва и детонации.

Взрыв – процесс быстрого выделения большого количества энергии. В результате взрыва взрывоопасная смесь превращается в сильно нагретый газ с высоким давлением, который с большой силой воздействует на окружающую среду и вызывает образование взрывной волны.

Разрушения, вызванные взрывом, обусловлены действием взрывной волны. По мере удаления от места взрыва механическое воздействие взрывной волны ослабевает.

Скорость распространения пламени при взрыве достигает сотен метров в секунду. При ускорении распространения пламени усиливается сжатие несгоревшего газа, оно распространяется по несгоревшему газу в виде последовательных ударных волн, которые соединяются в одну мощную ударную волну сильно сжатого и разогретого газа. В результате возникает устойчивый режим распространения реакции. Разновидность горения, распространяющегося со скоростью, превышающей скорость звука, называют детонацией . Она характеризуется резким скачком давления в месте взрыва, который обладает большим разрушающим действием.

Жидкости и твердые вещества образуют воспламеняющиеся смеси при повышении их до температуры, при которой вследствие испарения в достаточном количестве образуются газообразные продукты. Взрывоопасными являются смеси пыли с воздухом. Витающая в воздухе пыль может находиться во взвешенном состоянии и оседать на стенах, оборудовании.

При горении выделяются ядовитые газы : синильная кислота, фосген и другие, а содержание кислорода в воздухе падает. Вот почему опасен не только и даже не столько огонь, сколько дым и гарь от него. Надо учитывать и возможные реакции организма человека при увеличении концентрации продуктов горения:

угарного газа : 0,01% - слабые головные боли; 0,05% - головокружение; 0,1% - обморок; 0,2% - кома, быстрая смерть; 0,5% - мгновенная смерть;

углекислого газа : до 0,5% - не воздействует; от 0,5 до 7% - учащение сердечного ритма, начало паралича дыхательных центров; свыше 10% - паралич дыхательных центров и смерть.

ТРЕБОВАНИЯ БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ БЫТОВЫХ ГАЗОВЫХ ПРИБОРОВ (И ГАЗОВЫХ ПЛИТ В ЧАСТНОСТИ)

Нормы оснащения помещений ручными огнетушителями

Таблица 1

2

Класс пожара

Пенные и водные огнетушители вместимостью 10 л

Порошковые огнетушители вместимостью, л / массой огнетушащего вещества, кг

Хладоновые огнетушители вместимостью 2 (3) л

Углекислотные огнетушители вместимостью, л / массой огнетушащего вещества, кг

5 (8)/3(5)

А, Б, В (горючие газы и жидкости)

Общественные здания

Примечания :

1. Для тушения пожаров различных классов порошковые огнетушители должны иметь соответствующие заряды: для класса А - порошок ABC (Е); для классов В, С и Е - ВС (Е) или ABC (Е), для класса D - D.

2. Для порошковых огнетушителей и углекислотных огнетушителей приведена двойная маркировка: старая маркировка по вместимости корпуса, л/новая маркировка по массе огнетушащего состава, кг. При оснащении помещений порошковыми и углекислотными огнетушителями допускается использовать огнетушители как со старой, так и с новой маркировкой.

3. Знаком " + + " обозначены рекомендуемые к оснащению объектов огнетушители, знаком " + " - огнетушители, применение которых допускается при отсутствии рекомендуемых и при соответствующем обосновании; знаком " - " - огнетушители, которые не допускаются для оснащения данных объектов.

4. В замкнутых помещениях объемом не более 50 м 3 для тушения пожаров вместо переносных огнетушителей или дополнительно к ним могут быть использованы огнетушители самосрабатывающие порошковые.

Нормы оснащения помещений передвижными огнетушителями

Таблица 2

Предельная защищаемая площадь, м 2

Класс пожара

Воздушно-пенные огнетушители вместимостью 100 л

Комбинированные огнетушители вместимостью (пена, порошок) 100 л

Порошковые огнетушители вместимостью 100 л

Углекислотные огнетушители вместимостью, л

А, Б, В (горючие газы и жидкости)

В (кроме горючих газов и жидкостей), Г

Примечания:

1. Для тушения очагов пожаров различных классов порошковые и комбинированные огнетушители должны иметь соответствующие заряды: для класса А - порошок АВС (Е); для класса В, С и Е - ВС (Е) или АВС (Е); для класса D - D.

2. Значения знаков " + +", " + " и " - " приведены в примечании 2 к таблице 1.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.