Магеллановы облака млечный путь андромеда. Большое и малое магеллановы облака. Где живёт золотая рыбка

Если вы окажетесь в Южном полушарии ясной ночью, вы легко увидите на небе два светящихся облака неподалеку от Млечного Пути. Эти звездные облака — спутниковые галактики Млечного Пути под названием Малое Магелланово облако и Большое Магелланово облако.

Используя новую информацию мощного космического телескопа, астрономы Мичиганского университета (США) обнаружили, что юго-восточная область, или Крыло Малого Магелланова облака, движется прочь от основного тела этой карликовой галактики, обеспечивая первое явное доказательство того, что Малое и Большое Магеллановы облака недавно столкнулись.

Малое Магелланово облако. ESA

Вместе с международной командой ученых профессор астрономии Салли Ои и студент Джонни Дориго Джоунс изучали Малое Магелланово облако на предмет наличия сбежавших звезд или звезд, которые были выброшены скоплениями облака. Чтобы наблюдать за этой галактикой, они использовали последний отчет Gaia, нового орбитального телескопа, запущенного Европейским космическим агентством.

Gaia разработан, чтобы делать снимки звезд снова и снова в течение нескольких лет. Это помогает составить план их движений в реальном времени. Таким образом, ученые могут измерить, как звезды двигаются по небу.

Изучение звезд, находящихся в одной галактике, помогает ученым сразу в двух аспектах. Во-первых, исследователи получают пример «набора» звезд одной родительской галактики. Во-вторых, это дает астрономам возможность единым образом замерить расстояние до всех звезд, что помогает вычислить их индивидуальные скорости.

«Интересно, что Gaia получил данные о собственном движении этих звезд, — говорит Дориго Джоунс. — Если мы наблюдаем, как кто-то ходит в кабине самолета во время полета, движение, которое мы видим, включает движение самолета и намного более медленное движение идущего человека».

«Поэтому мы убрали движение всего Малого Магелланова облака, чтобы рассчитать скорости отдельных звезд. Мы заинтересованы в скорости индивидуальных звезд, так как пытаемся понять физические процессы, которые происходят в облаке».

Ои и Дориго Джоунс изучают сбежавшие звезды, чтобы определить, как они были выброшены из этих кластеров. При сценарии двоичной сверхновой, одна звезда в гравитационно связанной двоичной паре взрывается как сверхновая, выбрасывая другую звезду как рогатка. Этот механизм производит двоичные звезды, которые выделяют рентгеновские лучи.

Другой механизм — когда гравитационно неустойчивое звездное скопление выбрасывает одну или две звезды из группы. Это называется сценарием динамического извержения, которое производят обычные двоичные звезды.

Исследователи нашли значительное число сбежавших звезд среди рентгеновских двоичных систем и обычных двоичных систем, а это значит, что оба механизма важны для выбрасывания звезд из кластера.

Команда также заметила, что все звезды в Крыле движутся в похожем направлении и скорости. Это демонстрирует то, что Большое и Малое Магеллановы облака, вероятно, столкнулись несколько сотен миллионов лет назад.

Соавтор исследования Гуртина Бесла, астроном из Аризонского университета (США), смоделировала столкновение Большого и Малого Магеллановых облаков. Она и ее команда предсказали несколько лет назад, что прямое столкновение, заставит Крыло Малого Магелланова облака двигаться к Большому, а если две галактики просто будут проходить одна рядом с другой, звезды Крыла будут двигаться в перпендикулярном направлении. Данные Gaia показали, что Крыло действительно двигается прочь от Малого Магелланова облака к Большому, что еще раз подтверждает, что прямое столкновение галактик произошло.

Магеллановы Облака являются самыми ближайшими к нам галактиками. Названы они так потому, что их наблюдал и описал спутник и историограф Магеллана Пигафетта. Эти Облака-галактики можно наблюдать только в южном полушарии. Именно там моряки из экспедиции Магеллана обратили внимание на две сияющие в небе туманности. Они неизменно сопровождали экспедицию 1519–1522 годов.

Галактики Магеллановы Облака отличаются богатым и разнообразным составом звезд. Направления на Большое и Малое Магеллановы Облака составляют углы 33 и 45° с плоскостью Галактики. Это очень хорошо для наблюдений, поскольку не мешает пыль, находящаяся в плоскости Галактики.

Расстояние до каждого из Магеллановых Облаков составляет 46 кпс. Это только в полтора раза больше размеров Галактики. Оба Облака удалены друг от друга на расстояние около 20 кпс. Это намного меньше, чем расстояние между соседними галактиками. Ученые считают, что поскольку наша Галактика и оба Магеллановых Облака находятся столь близко друг от друга, то их следует рассматривать как одну, но тройную галактику. Оба Магеллановы Облака погружены в общую оболочку нейтрального водорода. Кроме того, они связаны между собой водородным мостом. Любопытно, что водород, который расположен близ главной плоскости Галактики, образует выступ, который направлен в сторону Магеллановых Облаков. Из Большого Облака в противоположную сторону от Галактики тянется нечто, похожее на спиральную ветвь. Если это действительно спиральная ветвь, то должна быть и вторая, парная ей и направленная в сторону Галактики. Такая вторая спиральная ветвь может действительно там находиться, но ее трудно различить из-за перспективы. Допускают даже, что Большое Облако и наша Галактика связаны между собой газовым мостом. Большое Магелланово Облако, показанное на рисунке 41, в поперечнике имеет приблизительно 10 кпс. Облако имеет сложную и разнообразную структуру. Четко просматривается удлиненное тело, которое напоминает перемычки у пересеченных спиралей. Видно множество мелких деталей, которые образуются вследствие расположения группировок звезд-сверхгигантов.

В Большом Магеллановом Облаке преобладает звездное население I типа. В Большом Облаке наблюдается почти пять тысяч сверхгигантов чрезвычайно высокой светимости. Каждый из них излучает энергии больше, чем 10 000 солнц. В Большом Облаке находится белая звезда HD 33579. Эту звезду еще называют S Золотой Рыбки. Эта звезда светит, как миллион звезд.

Размеры Малого Магелланова Облака (рис. 42) примерно в четыре раза меньше, чем Большого - 2,2 кпс. И звездное население I типа в нем не столь разнообразно. В обоих Магеллановых Облаках 532 крупные газовые туманности. Больше всего их в Большом Облаке.

Рис. 41. Большое Магелланово Облако

Рис. 42. Малое Магелланово Облако

В Магеллановых Облаках очень много звездных скоплений. Ученые зарегистрировали 1100 рассеянных скоплений в Большом Облаке и более 100 в Малом Облаке. В Большом Облаке открыто 35 шаровых скоплений, а в Малом Облаке - 5. В Магеллановых Облаках были обнаружены шаровые скопления, каких нет в нашей Галактике. Они содержат множество голубых и белых гигантов. Поэтому они имеют белый цвет. Обычные же шаровые скопления состоят из красных гигантов, поэтому их цвет желтый - оранжевый. Полагают, что белые шаровые скопления очень молоды по сравнению с обычными.

В Магеллановых Облаках много переменных звезд различных типов. Только в Магеллановых Облаках и в нашей Галактике можно наблюдать долгопериодические и короткопериодические цефеиды. В Магеллановых Облаках наблюдались вспышки Новых звезд. Они, по сути, не отличались от Новых нашей Галактики.

В Магеллановых Облаках много диффузного вещества. Водород распространен по всему объему галактик. Доля водорода в Магеллановых Облаках составляет 6 %. В нашей Галактике доля водорода составляет только 1–2 %.

Пыли в Магеллановых Облаках не наблюдается. Но это не значит, что ее там нет. Косвенные факты позволяют заключить, что в Магеллановых облаках пыли больше, чем в нашей Галактике.

Далеко на южном небе, недостижимые для глаз оби­тателей северного полушария Земли, неуловимые для больших телескопов, которые построены и установлены в северном полушарии, находятся два замечательнейших объекта неба, два сокровища астрономии -Большое и Малое Магеллановы Облака.

Первое дошедщее до нас описание наблюдений Магел­лановых Облаков принадлежит Пигафетте, спутнику и историографу Магеллана в нервом кругосветном путешествии. Когда в 1519-1522 гг. корабли Магеллана шли по южным водам Атлантического, а затем Тихого и Индий­ского океанов, Пигафетта обратил внимание на стоящие высоко в небе, неуклонно сопровождавшие Экспедицию две сияющие туманности и описал их. Ничего подобного на северном небе не наблюдается.

Огромное значение Магеллановых Облаков для науки определяется тем, что это ближайшие к нам галакти­ки. Следующий сосед, система в Скульпторе, находится в два раза дальше. Кроме того, Магеллановы Облака - это галактики с чрезвычайно богатым и разнообразным соста­вом объектов. В этом отношения им принадлежит пальма первенства в Местной системе галактик. Система же в Скульпторе - значительно менее интересная галактика, лишенная звезд-сверхгигантов, звездных скоплений, га­зовых туманностей и других объектов, имеющих важное значение для изучения эволюции звезд и звездных систем. Ближайшими галактиками, сравнимыми по богатству состава с Магеллановыми Облаками, являются туманность Андромеды (NGC 224) и туманность Треугольника (NGC 598). Но они расположены в 10 раз дальше. А это означает, что при помощи 60-сантиметрового телескопа Магеллановы Облака можно изучать с той же подробно­стью, с какой изучают NGC 224 и NGC 598, используя гигантский 6-метровый телескоп. Какие же интересные сведения можно было бы получить, наведя на Магелла­новы Облака 6-метровый телескоп! Однако, как заметил один наблюдатель, «бог решил пошутить, поселив астро­номов в северном полушарии Земли, а Магеллановы Об­лака поместив на южном небе».

Страны северного полушария давно уже располагают 5-метровым телескопом и большим числом телескопов с диаметром объектива от двух до трех метров. А в 1976 г.

в Советском Союзе вошел в строй шестиметровый теле­скоп.

В южном же полушарии до последнего времени име­лось лишь два 180-сантиметровых телескопа. С их по­мощью в основном и наблюдали Магеллановы Облака. Лишь совсем недавно южное полушарие обогатилось, на­конец, 4- и 3,7-метровым телескопами. Пройдут годы, десяток лет, прежде чем эти телескопы внесут существен­ный вклад в изучение Магеллановых Облаков.

Многие объекты исследуются в Магеллановых Облаках даже успешнее, чем в самой нашей Галактике. Это свя­зано, во-первых, с тем, что наиболее интересные объекты Галактики лежат очень близко к ее главной плоскости, а так как и мы находимся около этой плоскости, то на­блюдениям сильно мешает поглощение света темной пылевой материей, которая тоже сконцентрирована у главной плоскости. Направления на Большое и Малое Магеллановы Облака составляют углы 33 и 45° с плоско­стью Галактики, поэтому поглощение света влияет очень слабо. Другим преимуществом Магеллановых Облаков яв­ляется возможность, сравнивая видимые величины их звезд, сравнивать и абсолютные величины, светимости. Такое сравнение возможно потому, что размеры Магелла­новых Облаков малы в сравнении с расстоянием до них и все звезды каждого Облака можно считать приблизи­тельно одинаково удаленными от нас. Это условие для звезд нашей Галактики, разумеется, не выполняется, а сколь важным может быть его значение, видно из сле­дующего исторического примера.

В 1910 г, Г. Ливитт (США), наблюдая цефеиды в Ма­лом Магеллановом Облаке, обнаружила, что долгопериодические цефеиды, имеющие больший блеск, имеют и больший период изменения блеска. Довольно точно вы­полнялось правило, согласно которому вдвое большему периоду соответствовала меньшая на 0 m ,6 видимая звезд­ная величина цефеиды. Так как для звезд в Магеллановых Облаках разность абсолютных звездных величин равна разности видимых звездных величин, То был уста­новлен физический закон - вдвое большему периоду у цефеид Малого Магелланова Облака соответствует мень­шая на 0 m ,6 абсолютная звездная величина, т. е. в 1,7 раза большая светимость. Впоследствии выяснилось, что этот закон является универсальным. Он справедлив для долгопериодических цефеид Большого Магелланова Облака, Галактики, туманности Андромеды и других галактик; Аналогичное соотношение было установлено и для короткопериодических цефеид. Открытая зависимость позволи­ло разработать новый метод определения расстояний, сыгравший большую роль в астрономии. Если нужно определить расстояние до звездного скопления или галак­тики, то достаточно обнаружить в этой системе цефеиду, пронаблюдать изменение ее блеска и определить период, затем по соотношению между периодом и абсолютной звездной величиной М определить последнюю. Нужно также измерить видимую звездную величину т, и тогда вычисляется неизве­стное расстояние r.

Насколько велико значение метода определения рас­стояний по цефеидам, можно судить по тому, что он стал основой определения расстояний до других галактик.

Если бы долгопериодические цефеиды не наблюдались в Магеллановых Облаках, то соотношение, связывающее их периоды и абсолютные звездные величины, удалось бы установить лишь значительно позднее, так как различие расстояний до долгопериодических цефеид Галактики мешает видимым образом проявиться этой зависимости.

Расстояние до каждого из Магеллановых Облаков, 46 кпс, лишь в полтора раза превосходит диаметр Галактики, а расстояние между Большим и Малым Облаками составляет около 20 кпс. Эти расстояния во много раз меньше, чем среднее расстояния между соседними га­лактиками вообще и даже чем средние расстояния между соседними галактиками в Местной системе галактик. Поэтому правильнее считать, что Галактика и Магелла­новы Облака образуют тройную галактику. Взаимное вли­яние в этой тройной системе, где Галактика должна считаться главным телом, а Магеллановы Облака спут­никами, прослеживается в том, что, как показывают ра­дионаблюдения, оба Магеллановых Облака погружены в общую оболочку нейтрального водорода и связаны допол­нительно между собой.водородным мостом, а водород, расположенный близ главной плоскости Галактики, обра­зует выступ, направленный в сторону Магеллановых Об­лаков. Из Большого Облака тянется в противоположную от Галактики сторону нечто вроде спиральной ветви и тогда должна быть аналогичная, неразличимая вследствие перспективы ветвь в сторону Галактики. Возможно, что Большое Облако и Галактика связаны между собой газо­вым мостом.

Большое Магелланово Облако имеет в поперечнике приблизительно 10 кпс У него сложная и разнообразная структура. Явно вырисовывается удлиненное тело, напоминающее перемычки у пересеченных спиралей. Имеется много мел­ких деталей, являющихся результатом группировок звезд сверхгигантов. В Большом Облаке доминирует звездное население I типа и оно изобилует выдающимися предста­вителями этого типа населения. В этом отношении Боль­шое Магелланово Облако превосходит даже область спи­ральных ветвей нашей Галактики. В нем очень много голубых сверхгигантов чрезвычайно высокой светимости. Французский астроном Вокулер насчитал в Большом Об­лаке 4700 сверхгигантов, каждый из которых излучает мощнее, чем 10 000 солнц, и именно здесь находятся ре­кордсмены по светимости среди известных нам звезд.

В таблице приводится список известных звезд наи­большей светимости в различных галактиках.

Мы видим, что чемпионом по светимости среди всех различаемых нами звезд (в далеких галактиках мы не можем различать отдельных звезд) является белая звезда НD 33579, находящаяся в Большом Магеллановом Обла­ке. Эта звезда называется также S Золотой Рыбки. Ее аб­солютная звездная величина равна-10 m ,1 и она светит приблизительно как миллион солнц. Если бы на месте ближайшей к нам звезды вместо а Центавра находилась HD 33579, то человечество на Земле было бы обеспечено дополнительным и более ярким, чем в настоящее время, ночным освещением. На этом расстоянии HD 33579 све­тила бы как пять лун. Таблица показывает; что по мощности звезд-сверх­гигантов на первом месте стоит Большое Магелланово Облако; наша Галактика и туманность Треугольника (NGC 598) среди близких галактик находятся на втором месте, а Малое Магелланово Облако, туманность Андро­меды (NGC 224) и NGC 6822 - на третьем.

Ввиду того, что все звезды Большого Магелланова Облака находятся практически на одинаковом расстоянии от нас, в этой системе удобнее, чем в нашей Галактике, определять относительную численность звезд различной светимости.

Подсчитав число звезд различной видимой звездной величины в одном из участков Большого Облака и зная расстояние, Теккерей получил результаты, представлен­ные в таблице

К сожалению, Теккерей смог подсчитывать только сверхгиганты и яркие гиганты. Если бы 5-метровый теле­скоп находился в южном полушарии, то подсчеты можно было бы распространить до звезд сM = +5 m , т. е. таких, как наше Солнце. Это дало бы очень интересные сведения о звездном населении Магеллановых Облаков. Из резуль­татов Теккерея следует, что по мере уменьшения свети­мости сверхгигантов и гигантов число звезд этой свети­мости возрастает. Было бы интересно знать, до каких абсолютных, звездных величин распространяется эта закономерность. Достигается ли при некотором значении светимости максимальная численность звезд, после которого при дальнейшем уменьшении светимостей число звезд данной светимости уже уменьшается? ,

Размеры Малого Магелланова Облака при­близительно в четыре раза меньше, чем Большого - 2,2 кпс. Несмотря на сходство во внешнем облике, взаим­ную близость и, по-видимому, общность происхождения, в звездном населении Облаков обнаруживаются различия. В Малом Облаке I тип звездного населения представлен не так богато и представители его не являются столь вы­дающимися экземплярами, как в Большом Облаке.

Мы наблюдаем другие галактики сквозь нашу Галак­тику. Для определения характеристик отдельных звезд других галактик нужно уметь отличать, отделять их от проектирующихся на эти галактики звезд нашей Галакти­ки. Иначе, если мы примем слабую и близкую, находя­щуюся, например, на расстоянии 46 кпс звезду за звезду, входящую в состав Большого Магелланова Облака, рас­положенного в тысячу раз дальше, то светимость звезды будет преувеличена в 1000 2 - миллион раз. Так можно получить много фиктивных «сверхгигантов». Надежным способом оградить исследование от подобных ошибок яв­ляется определение лучевой скорости звезды. Если, на­пример, звезда, находящаяся в направлении Большого Магелланова Облака, имеет лучевую скорость, не очень сильно отличающуюся от лучевой скорости самого облака +280 км/с, а именно, если эта лучевая скорость лежит в интервале +250- +310 км/с, то, без сомнения, звезда принадлежит Большому Магелланову Облаку. Если звез­да принадлежит Галактике и лишь проектируется на Большое Магелланово Облако, то ее скорость не будет превосходить +60 - +70 км/с. В этом направлении дру­гие лучевые скорости, лежащие, например, в интервале о г +70 до +260 км/с, не встречаются.

Можно также использовать собственные движения. У звезд других галактик они всегда из-за очень больших расстояний равны нулю. Если у звезды обнаруживается собственное движение, это определенно звезда нашей Га­лактики. Для звездного населения I типа характерно присут­ствие больших газовых - водородных туманностей. И в этом отношении Большое Магелланово Облако, изобилу­ющее водородными туманностями, выделяется среди близ­ких галактик. В обоих Магеллановых Облаках насчитыва­ется 532 крупные газовые туманности, преобладающая часть из них входит в состав Большого Облака. Здесь же находится самая грандиозная из известных газовых ту­манностей - 30 Золотой Рыбки, имеющая в диаметре около 200 не и массу, равную массе 500 000 Солнц. Для сравнения укажем, что самая большая известная водо­родная туманность нашей Галактики имеет в диаметре 6 кпс и ее масса равна лишь 100 солнечным массам.

Очень много в Магеллановых Облаках звездных скоп­лений. Еще в 1847 г. Джон Гершель, ездивший специаль­но в Южную Африку, чтобы наблюдать Магеллановы Об­лака, насчитал в Большом Облаке 919, а в Малом Облаке 214 звездных скоплений и облаков диффузной материи. В настоящее время общее число; занесенных в каталоги рассеянных скоплений в Большом Облаке составляет 1600, а в Малом Облаке свыше 100. Все эти скопления по сво­им размерам и светимостям сравнимы с самыми богатыми рассеянными скоплениями нашей Галактики. Нужно ду­мать, что в Магеллановых Облаках имеется большое ко­личество еще не выявленных рассеянных скоплений меньших размеров и менее богатых звездами.

Шаровых скоплений, подобных шаровым скоплениям Галактики, открыто в Большом Облаке 35 ив Малом Облаке 5. Но обнаружены и новые объекты, каких в Галактике нет — шаровые скопления, содержащие мно­жество голубоватых и белых гигантов и потому имеющие белый цвет, в то время как так называемые «обычные» шаровые скопления, в том числе все шаровые скопления Галактики, располагают только красными гигантами и их цвет желтый - оранжевый. Эти шаровые скопления но­вого типа представляют большой интерес. Есть предполо­жение, что их возраст невелик, в то время как «обычные» шаровые скопления - старые образования. Нужно найти ответ на вопрос, почему в Большом Магеллановом Обла т ке имеются голубые шаровые скопления, а в Галактике их нет.

Магеллановы Облака изобилуют переменными звезда­ми различных типов. Только в этих двух галактиках, не считая нашей, можно в настоящее время наблюдать ц долгопёриодические, и короткопериодические цефеиды. Это обстоятельство, как мы увидим дальше, чрезвычайно важно для выработки правильных способов определения внегалактических расстояний.

Впервые вспышка новой звезды в Малом Облаке наблюдалась в 1897 г., а в Большом Облаке в 1926 г. К настоящему времени зарегистрирован уже не один деся­ток таких вспышек.

Богаты Магеллановы Облака и диффузной материей. Исследование приходящего от них радиоизлучения с дли­ной волны 21 см показывает, что водород в них не только сконцентрирован в отдельных облаках, но распространен и по всему объему галактик. В то время как в нашей Галактике водород составляет лишь 1-2%’ общей мас­сы, в Магеллановых Облаках его доля оценивается в 6%.

Пылевую материю в Магеллановых Облаках непосред­ственно наблюдать не удается. Прямое наблюдение материи в галактиках обычно возможно только в тех слу­чаях, когда сильно сжатые галактики мы видим с ребра или почти с ребра. Лишь в этом случае толща пылевой материи вдоль луча зрения настолько значительна, что обнаруживается явно. Поэтому для выявления пылевой материи в Магеллановых Облаках применяют оригиналь­ный способ, который впервые употребил Шепли. Подсчи­тывают число далеких галактик, наблюдаемых сквозь Магеллановы Облака, и сравнивают с числом галактик в соседних областях. Например, число далеких галактик, наблюдаемых сквозь центральную области Большого 06^ лака, приблизительно в 10 раз меньше, чем число галак­тик такой же видимой величины, наблюдаемых на такой же площади в соседней области неба. Это различие^долж-но объясняться тем, что в Большом Магеллановом Облаке имеется пылевая материя, ослабляющая свет далеких галактик. Поэтому более далекие и слабые из них стано­вятся невидимыми. Из того что число галактик при на­блюдении сквозь Большое Облако уменьшается в 10 раз, можно заключить, что находящаяся там пылевая материя ослабляет блеск всех объектов в среднем на 1 m ,7. Для срав­нения укажем, что согласно наблюдениям и произведен­ным расчетам блеск галактик, которые рассматривались бы сквозь нашу Галактику в направлении, перпендику­лярном к ее главной плоскости, ослаблялся бы в среднем только на 0m,7. По-видимому, и пылевой материей Боль­шое Облако богаче нашей Галактики. Поглощение света обнаруживается и в Малом Магеллановом Облаке.

Изучение Магеллановых Облаков показало единство, общность различных звездных систем. Все объекты — звезды различных спектральных классов, различных светимостей, переменные и стационарные, различные типы звездных скоплений, газовая и пылевая материя, все то разнообразие, которое поражает исследователя Галактики, находит свое место и в Магеллановых Облаках. Значит, законы, управляющие формированием звезд и звездных скоплений, в нашей Галактике и в Магеллановых Обла­ках одинаковы.

Приглашаем Вас обсудить данную публикацию на нашем .

Большое Магелланово Облако – это и путеводный объект для мореплавателей, и интереснейшее космическое образование, привлекающее внимание астрономов не одно столетие.

Темное небо Южного полушария расцвечено мириадами светящихся точек, среди них хорошо различимо яркое скопление звезд в форме облака. Это верные спутники родного нам Млечного Пути – Большое и Малое Магеллановы Облака. Много столетий они служат единственным ориентиром для путешественников южных широт. Описание этих скоплений попало в Европу с кораблями первого кругосветного мореплавателя Фернана Магеллана.

Созвездие Золотая рыба, Большое Магелланово облако находится в нижней части схемы

Записывая все значительные события путешествия, делая заметки обо всем увиденном, Пифагетта в 1519 году поведал жителям Северного полушария о невиданных ими облаках. Современным названием они также обязаны благодарному спутнику Магеллана. После трагической гибели первопроходца в бою с туземцами, летописец предложил таким образом увековечить память о великом путешественнике.

Размеры и свойства

После пересечения экватора в направлении юга, можно рассмотреть Большое Магелланово Облако (БМО), которое представляет собой особенный мир, отдельную галактику. По своим размерам она ощутимо уступает Млечному Пути, как и все спутники – центральным объектам. БМО двигается по круговой орбите, испытывая сильное воздействие гравитации нашей Галактики. Величина этого скопления звезд оценивается в 10 тыс. световых лет, а по массе находящихся в нем космических тел и газа оно в 300 раз уступает Млечному Пути. Нашу планету и БМО разделяет расстояние в163 тыс. световых лет, но все же, это наш ближайший сосед среди далеких миров Местной Группы. В начале изучения Магеллановы Облака отнесли к неправильным галактикам, не имеющим четко определенной структуры, но новые факты помогли заметить наличие спиральных ветвей и перемычки. Карликовая галактика была причислена к подкатегории SBm.

Место нахождения и состав

Занимающее значительную часть созвездия Золотой Рыбы, Большое Магелланово Облако включает 30 млрд. звезд. Оно значительно крупнее и ближе к Земле, чем связанное с ним потоком водорода и общей газовой пеленой Малое Облако. В его изучении, начатом персами еще в X веке, ученые смогли продвинуться значительно. Здесь сказалось удачное расположение объекта и то, что все его составляющие находятся на примерно одинаковом расстоянии. Множество уникальных объектов, наполняющих малую галактику: туманности, звезды-сверхгиганты, шаровые скопления, цефеиды, стали источниками неоценимых знаний об эволюции мироздания.

Систематические наблюдения за затмениями звезд и изменением их яркости помогли точно вычислить расстояние до космических тел, их размеры и массу. Изучение Большого Магелланова Облака дало много важных открытий, которые невозможно переоценить. Замечена нехарактерная для солидного возраста нашей Галактики динамика, сопровождающая появление новых звезд. Для Млечного Пути такие процессы закончились несколько миллиардов лет назад. Большое же Облако насчитывает тысячи объектов I типа, содержащих большое количество металла, присущего юным звездам.

Значимые объекты БМО

Снимок туманности Тарантул полученный с использованием фильтров Ha, OIII и SII. Общее время экспозиции 3,5 ч. Автор Alan Tough.

Знаменитая область, где наблюдается энергичное звездообразование, – это туманность «Тарантул», получившая такое имя за сходство с огромным пауком. На снимках БМО это место выделяется особой яркостью. Внутри облака газа, размером в тысячу световых лет, рождаются новые звезды, выбрасывая колоссальную энергию в охватывающее их пространство, и заставляя его светиться.

Катаклизмы, сопровождающие конец жизненного цикла звезд, нередкое явление в туманности. Такой выброс энергии астрономы зафиксировали в 1987 году – это была самая близкая к Земле вспышка из всех отмеченных. Центральная часть «Тарантула» известна находящимся здесь уникальным объектом, названным R131a1. Он представлен массивнейшей из изученных звезд, которая превосходит Солнце по весу в 265 раз, а по световому потоку – в 10 млн. раз.

Одна из уникальных звезд Большого Магелланова Облака стала родоначальницей отдельного класса светил. S Золотой Рыбы – гипергигант, довольно редкий, имеющий огромную массу и светимость, существующий непродолжительный срок. Его имя использовалось для названия класса голубых переменных звезд. Излучаемый им световой поток превосходит солнечный в 500 тыс. раз. Кроме перечисленных голубых гигантов, необходимо выделить звезду БМО WHO G64. Это красный сверхгигант, его температура невысока – 3200 K, радиус равен 1540 радиусов нашего светила, а яркость – выше в 280 тыс. раз.

Наблюдая за миллиардом звезд, наполняющих Большое Магелланово Облако, замечено, что часть из них движется в обратном направлении и отличается своим составом. Это объекты, украденные притяжением галактике у ее соседки, Малого Облака. Расположение БМО в Южном полушарии лишает жителей северных широт возможности его наблюдать. А если бы S Золотой Рыбы заменила собой ближайшую к нам звезду, на Земле не стало бы темного времени суток.


Магеллановы Облака

- галактики-спутники нашей Галактики; расположены относительно близко друг к другу, образуют гравитационно связанную (двойную) систему. Для невооружённого глаза выглядят как изолированные облака Млечного Пути. Впервые М. О. описал Пигафетта, участвовавший в кругосветном плавании Магеллана (1519-22 гг.). Оба Облака - Большое (БМО) и Малое (ММО) - явл. неправильными галактиками. Интегральные характеристики М. О. даны в таблице.

Интегральные характеристики Магеллановых Облаков

БМО ММО
Координаты центра 05 h 24 m -70 o 00 h 51 m -73 o
Галактическая широта -33 o -45 o
Угловой диаметр 8 o 2,5 o
Соответствующий линейный размер, кпк 9 3
Расстояние, кпк 50 60
Интегральная величина, M V -17,9 m -16,3 m
Наклонение к лучу зрения 27 o 60 o
Средняя лучевая скорость, км/с +275 +163
Общая масса,
Масса межзвездного водорода HI,

На крупнейших телескопах в М. О. можно разрешить звёзды со светимостью, близкой к солнечной; в то же время вследствие значит. превышения расстояния до М. О. над их поперечником различие видимых звёздных величин входящих в М. О. объектов равно различию их абс. (для БМО погрешность не превосходит 0,1 m ). Так как М. О. расположены на высоких галактич. широтах, поглощение света межзвёздной средой нашей Галактики и примесь её звёзд мало искажают картину М. О. К тому же плоскость БМО (рис. 1) почти перпендикулярна лучу зрения, так что видимое соседство входящих в него объектов означает, как правило, и пространственную их близость. Всё это помогает изучению взаимосвязи звёзд различного типа, скоплений и диффузного вещества (в частности, звёзды высокой светимости видны там не далее 5-10" от места своего рождения). М. О. наз. "мастерской астрономических методов" (X. Шепли), в частности в М. О. была открыта зависимость период-светимость для . Объекты М. О. обладают, наряду со сходством, и рядом поразительных отличий от аналогичных членов Галактики, что указывает на связь структурных особенностей галактик с характеристиками их населения.

В М. О. имеется огромное количество всевозможных возрастов и масс; каталог скоплений БМО включает 1600 объектов, а полное их число составляет ок. 5000. Около сотни из них выглядят как Галактики и весьма близки к ним по массам и степени концентрации звёзд. Однако шаровые скопления Галактики все очень стары [(10-18) лет], тогда как в М. О. наряду со столь же старыми скоплениями имеется ряд шаровых скоплений (23 в БМО) с возрастами ~10 7 -10 8 лет. Возраст скоплений М. О. однозначно коррелирует с хим. составом (молодые скопления содержат относительно больше тяжёлых элементов), тогда как у скоплений галактич. диска такая корреляция отсутствует.

В БМО известно также 120 обширных группировок молодых звёзд высокой светимости (ОВ-ассоциаций), связанных, как правило, с областями ионизованного водорода (зонами НII). В ММО таких группировок на порядок меньше, молодые звёзды сосредоточены там в осн. теле и в "крыле" ММО, вытянутом к БМО, тогда как в БМО они разбросаны по всему Облаку, а в осн. теле преобладают звёзды с возрастом 10 8 -10 10 лет. Радиоастрономич. наблюдения в линии = 21 см нейтрального водорода (HI) показали, что в БМО имеются 52 изолированных комплекса HI со ср. массой и размерами 300-900 пк, а в ММО плотность HI почти равномерно нарастает к центру. Доля HI по отношению к полной массе в БМО в неск. раз больше, чем в Галактике, а в ММО больше на порядок. Даже в наиболее молодых объектах БМО содержание тяжёлых элементов, по-видимому, несколько меньше, чем в Галактике, в ММО оно, без сомнения, ниже в 2-4 раза. Все эти особенности М. О. можно объяснить тем, что там не было первоначальной бурной вспышки , приведшего в Галактике к исчерпанию осн. запасов газа и сравнительно быстрому обогащению его остатков тяжёлыми элементами на протяжении первых миллиардов (или сотен миллионов) лет существования Галактики. Присутствие старых шаровых скоплении и типа RR Лиры доказывает, однако, что звездообразование началось в М. О. и в Галактике примерно в одно время. Наличие большого числа молодых шаровых скоплений в М. О. (в Галактике их нет), возможно, означает, что их образованию в совр. диске Галактики препятствует спиральная волна плотности, к-рая может инициировать звездообразование и в газовых облаках, не достигших высокой степени сжатия (см. ).

В каждом из М. О. известно ~ 10 3 цефеид, причём максимум в их распределении по периодам сдвинут в ММО к малым периодам (по сравнению с цефеидами в Галактике), что также можно объяснить меньшим содержанием в звёздах ММО тяжелых элементов. Распределение цефеид по периодам неодинаково в разных участках М. О., что в соответствии с зависимостью период-возраст объясняется различием возраста массивных звёзд в этих областях. Поперечник областей, в к-рых цефеиды и скопления имеют близкие возрасты, составляет 300-900 пк. Объекты в этих звёздных комплексах, очевидно, генетически связаны друг с другом - они возникли из одного газового комплекса.

В неск. участках М. О. изучены звёзды типа RR Лиры, к-рые в БМО имеют ср. звёздную величину 19,5 m с весьма небольшой дисперсией, из чего следуют малая дисперсия их светимостей и слабое поглощение света в БМО. Пылевых туманностей в БМО найдено немного (около 70), и лишь в некоторых участках внутри и вблизи гигантской зоны НII Тарантул (30 Золотой Рыбы) поглощение достигает 1-2 m . Отношение массы пыли к массе газа в БМО на порядок меньше, чем в Галактике, и низкое содержание пыли должно отражаться на особенностях звездообразования в М. О. Оболочки в БМО (известно неск. десятков) заметно больше по размерам при той же поверхностной яркости, что и в Галактике, диаметры их, как и кольцевых зон НII, достигают 200 пк. Имеется 9 сверхгигантских оболочек НII с поперечником ок. 1 кпк. В М. О. наиболее тесную связь с газом показывают не 0-звёзды, а . Замечено также, что области звездообразования в БМО находятся, как правило, в районах с наибольшим градиентом плотности HI.

Зоны НII, сверхгиганты и планетарные туманности (последних открыто 137 в БМО и 47 в ММО) позволяют определить центр вращения БМО. Он находится в 1 кпк от его оптич. центра. Расхождение объясняется, по-видимому, тем, что последний определяется по ярким объектам, масса к-рых не явл. доминирующей. Быстрое вращение и небольшая дисперсия скоростей (порядка 10 км/с для молодых объектов) свидетельствуют о высокой степени сплюснутости БМО (нек-рые астрономы считают БМО спиральной галактикой с массивной перемычкой и слабо выраженными спиральными ветвями). Старые шаровые скопления и, по-видимому, звезды типа RR Лиры также сосредоточены в диске, а не в короне БМО. Своеобразие кинематики ММО и очень большую поверхностную плотность цефеид в нём можно объяснить тем, что ММО ориентировано к нам торцом своего осн. тела, тогда как БМО видно с направления, почти перпендикулярного плоскости его диска.

Замечательной особенностью БМО явл. открытая в нём звёздная сверхассоциация, в центре к-рой расположена гигантская зона НII (30 Золотой Рыбы, рис. 2) поперечником ок. 250 пк и массой . В центре зоны находится компактное скопление звёзд очень высокой светимости с общей массой (рис. 3). Оно явл. наиболее молодым из известных шаровых скоплений и содержит самые массивные из молодых звёзд. Центральный объект скопления ярче на 2 m остальных звезд. По-видимому, это компактная группа горячих звёзд, возбуждающая область НII. По ряду характеристик скопление 30 Золотой Рыбы похоже на умеренно активные

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.