Аморфное и кристаллическое состояния вещества. Школьная энциклопедия Иногда аморфное

Аморфное состояние амо́рфное состоя́ние

твёрдое состояние вещества, характеризующееся изотропией физических свойств, обусловленной неупорядоченным расположением атомов и молекул. В отличие от кристаллического состояния переход из твёрдого аморфного состояния в жидкое происходит постепенно. В аморфном состоянии находятся различные вещества: стёкла, смолы, пластмассы и т. д.

АМОРФНОЕ СОСТОЯНИЕ

АМО́РФНОЕ СОСТОЯ́НИЕ, твердое конденсированное состояние (см. КОНДЕНСИРОВАННОЕ СОСТОЯНИЕ) вещества, характеризующееся изотропией (см. ИЗОТРОПИЯ) физических свойств, обусловленной неупорядоченным расположением атомов и молекул. Кроме изотропии свойств (механических, тепловых, электрических, оптических и т. д.) для аморфного состояния вещества характерно наличие температурного интервала, в котором аморфное вещество при повышении температуры переходит в жидкое состояние. Этот процесс происходит постепенно: при нагревании аморфные вещества в отличие от кристаллических, сначала размягчаются, затем начинают растекаться и, наконец, становятся жидкими, т. е. аморфные вещества плавятся в широком интервале температур.
Изотропия свойств характерна и для поликристаллического состояния (см. Поликристаллы (см. ПОЛИКРИСТАЛЛЫ) ), но поликристаллы имеют строго определенную температуру плавления, что позволяет отличать поликристаллическое состояние от аморфного.
В аморфных веществах, в отличие от кристаллических, отсутствует дальний порядок (см. ДАЛЬНИЙ ПОРЯДОК И БЛИЖНИЙ ПОРЯДОК) в расположении частиц вещества, но присутствует ближний порядок (см. БЛИЖНИЙ ПОРЯДОК) , соблюдаемый на расстояниях, соизмеримых с размерами частиц. Поэтому аморфные вещества не образуют правильной геометрической структуры, представляя собой структуры неупорядоченно расположенных молекул.
Структурное отличие аморфного вещества от кристаллического обнаруживается с помощью рентгенограмм. Монохроматические рентгеновские лучи, рассеиваясь на кристаллах, образуют дифракционную картину в виде отчетливых линий или пятен (см. Дифракция рентгеновских лучей (см. ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ) ). Для аморфного состояния это не характерно.
В отличие от кристаллического состояния, аморфное состояние вещества не является равновесным. Оно возникает в результате кинетических факторов и со структурной точки зрения эквивалентно жидкому состоянию: аморфное вещество представляет собой переохлажденную жидкость, обладающую очень большой вязкостью. Обычно аморфное состояние образуется при быстром охлаждении расплава, когда не успевает пройти кристаллизация вещества. Такой процесс характерен для получения стекол, поэтому аморфное состояние часто называют стеклообразным состоянием. Однако чаще всего даже самое быстрое охлаждение недостаточно быстро для того, чтобы помешать образованию кристаллов. В результате этого большинство веществ получить в аморфном состоянии невозможно.
Самопроизвольный процесс перестройки аморфного вещества в равновесную кристаллическую структуру за счет диффузионных тепловых смещений атомов практически бесконечен. Но иногда такие процессы можно достаточно легко осуществить. Например, аморфное стекло после выдержки при определенной температуре «расстекловывается», т.е. в нем появляются мелкие кристаллики и стекло мутнеет.
В природе аморфное состояние менее распространено, чем кристаллическое. В аморфном состоянии находятся: опал (см. ОПАЛ) , обсидиан (см. ОБСИДИАН) , янтарь (см. ЯНТАРЬ) , смолы природные (см. СМОЛЫ ПРИРОДНЫЕ) , битумы (см. БИТУМЫ) . В аморфном состоянии могут находиться не только вещества, состоящие из отдельных атомов и обычных молекул, такие, как стекла неорганические (см. СТЕКЛО НЕОРГАНИЧЕСКОЕ) и жидкости (низкомолекулярные соединения), но и вещества, состоящие из длинноцепочечных макромолекул - высокомолекулярные соединения, или полимеры (см. аморфные полимеры (см. АМОРФНЫЕ ПОЛИМЕРЫ) ). Физические свойства аморфных веществ сильно отличаются от кристаллических, благодаря чему они нашли широкое применение в промышленности (см. аморфные и стеклообразные полупроводниковые материалы (см. АМОРФНЫЕ И СТЕКЛООБРАЗНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ) , аморфные магнетики (см. АМОРФНЫЕ МАГНЕТИКИ) , аморфные металлы (см. АМОРФНЫЕ МЕТАЛЛЫ) ).


Энциклопедический словарь . 2009 .

  • Амон
  • аморфность

Смотреть что такое "аморфное состояние" в других словарях:

    АМОРФНОЕ СОСТОЯНИЕ - (от греч. amorphos бесформенный), твёрдое состояние в ва, характеризующееся изотропией св в и отсутствием точки плавления. При повышении темп ры аморфное в во размягчается и переходит в жидкое состояние постепенно. Эти особенности обусловлены… … Физическая энциклопедия

    Аморфное состояние - – твёрдое состояние вещества, обладающее двумя особенностями: его свойства (механические, тепловые, электрические и т. д.) в естественных условиях не зависят от направления в веществе (изотропия); при повышении температуры вещество,… … Энциклопедия терминов, определений и пояснений строительных материалов

    АМОРФНОЕ СОСТОЯНИЕ - АМОРФНОЕ СОСТОЯНИЕ, состояние твердого тела, характеризующееся изотропией физических свойств, обусловленной неупорядоченным расположением атомов и молекул. В отличие от кристаллического состояния (смотри Кристаллы), переход из аморфного состояния … Современная энциклопедия

    АМОРФНОЕ СОСТОЯНИЕ - конденсированное состояние вещества, характеризующееся изотропией физических свойств, обусловленной неупорядоченным расположением атомов и молекул. В отличие от кристаллического состояния переход из твердого аморфного в жидкое происходит… … Большой Энциклопедический словарь - – состояние твердого вещества, у которого отсутствует строгая периодичность, присущая кристаллам (дальний порядок). Из за меньшей упорядоченности аморфные вещества при тех же Р Т имеют больший объем и большую внутреннюю энергию, чем кристаллы.… … Палеомагнитология, петромагнитология и геология. Словарь-справочник.

    Аморфное состояние - (от греч. а отрицательная частица и morphē форма) твёрдое состояние вещества, обладающее двумя особенностями: его свойства (механические, тепловые, электрические и т. д.) в естественных условиях не зависят от направления в веществе… … Большая советская энциклопедия

    АМОРФНОЕ СОСТОЯНИЕ - тв. некристаллич. состояние в ва, характеризующееся изотропией физ. свойств и отсутствием точки плавления. При повышении темп ры аморфное в во размягчается и постепенно переходит в жидкое состояние. Эти особенности обусловлены отсутствием в А. с … Естествознание. Энциклопедический словарь


Естественным отличием строения большинства твердых материалов (за исключением монокристаллов), в сравнении с жидкими и особенно газообразными (низкомолекулярными) веществами, является их более сложная многоуровневая организация (см. табл. 4.1 и рис. 4.3). Это связано с уменьшением ковалентности и ростом ме- талличности и ионности гомо- и гетероядерных связей элементов их микроструктуры (см. рис. 6.2 и 6.6 и табл. 6.1-6.7), что приводит к росту числа элементов в структуре вещества и материала и соответствующему изменению его агрегатного состояния. При изучении структурной иерархии твердых материалов необходимо понимать единство и различия в уровнях структурной организации твердых металлических и неметаллических материалов с учетом степени упорядоченности в объеме материала элементов, их образующих. Особое значение имеет разница в структуре твердых кристаллических и аморфных тел, заключающаяся в способности кристаллических материалов, в отличие от аморфных тел, образовывать целый ряд более сложных структур, чем базовый электронно-ядерный химический уровень структур.

Аморфное состояние. Специфика аморфного (в пер. с греч. - бесформенного) состояния заключается в нахождении вещества в конденсированном (жидком или твердом) состоянии с отсутствием в его структуре трехмерной периодичности в расположении элементов (атомных остовов или молекул), составляющих это вещество. В результате особенности аморфного состояния обусловлены отсутствием дальнего порядка - строгой повторяемости во всех направлениях одного и того же элемента структуры (ядра или атомного остова, группы атомных остовов, молекулы и т.п.) на протяжении сотен и тысяч периодов. В то же время у вещества в аморфном состоянии существует ближний порядок - согласованность в расположении соседних элементов структуры, т.е. порядок, соблюдаемый на расстояниях, сравнимых с размерами молекул. С расстоянием эта согласованность уменьшается и через 0,5- 1 нм исчезает. Аморфные вещества отличаются от кристаллических изотропностью, т.е. подобно жидкости они имеют одинаковые значения данного свойства при измерении в любом направлении внутри вещества. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств - это второй важный признак, отличающий аморфное состояние твердого вещества от кристаллического. В отличие от кристаллического вещества, имеющего определенную температуру плавления, при которой происходит скачкообразное изменение свойств, аморфное вещество характеризуется интервалом размягчения и непрерывным изменением свойств.

Аморфные вещества менее устойчивы, чем кристаллические. Любое аморфное вещество в принципе с течением времени должно кристаллизоваться, и этот процесс должен быть экзотермическим. Часто аморфные и кристаллические формы - это различные состояния одного и того же по составу химического вещества или материала. Так, известны аморфные формы ряда гомоядерных веществ (серы, селена и др.), оксидов (В 2 О э, Si0 2 , Ge0 2 и др.).

Вместе с тем многие аморфные материалы, в частности большинство органических полимеров, закристаллизовать не удается. На практике кристаллизация аморфных, особенно высокомолекулярных, веществ наблюдается очень редко, так как структурные изменения затормаживаются из-за большой вязкости этих веществ. Поэтому, если не прибегать к специальным методам, например к длительному высокотемпературному воздействию, переход в кристаллическое состояние протекает с крайне малой скоростью. В подобных случаях можно считать, что вещество в аморфном состоянии практически вполне устойчиво.

В отличие от аморфного состояния, присущего веществам, находящимся как в жидком или расплавленном виде, так и в твердом конденсированном, стеклообразное состояние относится только к твердому агрегатному состоянию вещества. В результате в жидком или расплавленном аморфном состоянии могут находиться вещества с любым преимущественным типом связи (ковалентным, металлическим и ионным) и, следовательно, и с молекулярной и немолекулярной структурой. Однако в твердом аморфном , или точнее,- стеклообразном состоянии будут в первую очередь находиться вещества на основе ВМС, характеризуемые преимущественно ковалентным типом связи элементов в цепях макромолекул. Это связано с тем, что твердое аморфное состояние вещества получают в результате переохлаждения его жидкого состояния, что препятствует процессам кристаллизации и приводит к «замораживанию» структуры с ближним порядком расположения элементов. Отметим, что наличие макромолекул в структуре полимерных материалов ввиду влияния сте- рического - размерного фактора (ведь из катионов легче создать кристалл, чем из молекул) приводит к дополнительному усложнению процесса кристаллизации. Поэтому органические (полиметилметакрилат и т.д.) и неорганические (оксиды кремния, фосфора, бора и т.д.) полимеры способны образовывать стекла или реализовать аморфное состояние в твердых материалах. Правда, сегодня и расплавы металлов при сверхвысоких скоростях охлаждения (>10 6 °С/с) переводят в аморфное состояние, получая аморфные металлы или металлические стекла с комплексом новых ценных свойств.

Кристаллическое состояние. В кристаллическом теле наблюдается как ближний , так и дальний порядок расположения элементов структуры (атомные остовы или частицы в виде индивидуальных молекул), т.е. элементы структуры размещаются в пространстве на определенном расстоянии друг от друга в геометрически правильном порядке, образуя кристаллы - твердые тела, имеющие естественную форму правильных многогранников. Эта форма является следствием упорядоченного расположения в кристалле элементов, образующих трехмерно-периодическую пространственную укладку в виде кристаллической решетки. Вещество в кристаллическом состоянии характеризуется периодической повторяемостью в трех измерениях расположения в ее узлах атомных остовов или молекул. Кристалл является равновесным состоянием твердых тел. Каждому химическому веществу, находящемуся при данных термодинамических условиях (температуре, давлении) в кристаллическом состоянии, соответствует определенная кристаллическая ковалентная или молекулярная, металлическая и ионная структуры. Кристаллы обладают той или иной структурной симметрией атомных остовов (катионов в металле либо катионов и анионов в ионных кристаллах) или молекул, соответствующей ей макроскопической симметрией внешней формы, а также анизотропией свойств. Анизотропность - это неодинаковость свойств (механических, физических, химических) монокристалла в различных направлениях его кристаллической решетки. Изотропность - это одинаковость свойств вещества в различных ее направлениях. Естественно, что эти закономерности изменения свойств вещества определяются спецификой изменения или неиз- менения их структуры. Реальные кристаллические материалы (включая металлы) являются квазиизотропными структурами, т.е. они изотропны на мезоструктурном уровне (см. табл. 4.1) и их свойства одинаковы во всех направлениях. Это связано с тем, что большинство природных или искусственных кристаллических материалов являются поликристаллическими веществами, а не монокристаллами

(типа алмаза). Они состоят из большого количества так называемых зерен или кристаллитов, кристаллографические плоскости которых повернуты относительно друг друга на некоторый угол а. При этом в любом направлении мезоструктуры материала располагается примерно одинаковое количество зерен с различной ориентацией кристаллографических плоскостей, что приводит к независимости его свойств от направления. Каждое зерно состоит из отдельных элементов - блоков, которые повернуты относительно друг друга на углы порядка нескольких минут, что также обеспечивает изотропность свойств уже самого зерна в целом.

Кристаллические состояния одного и того же вещества могут различаться строением и свойствами, и тогда говорят, что данное вещество существует в различных модификациях. Существование нескольких кристаллических модификаций у данного вещества называется полиморфизмом, а переход из одной модификации в другую - полиморфным превращением. В отличие от полиморфизма, аллотропия - это существование элемента в виде различных «простых» (или, точнее, гомоядерных) веществ независимо от их фазового состояния. Например, кислород 0 2 и озон О э - аллотропные формы кислорода, существующие в газообразном, жидком и кристаллическом состояниях. В то же время алмаз и графит - аллотропные формы углерода - являются одновременно и его кристаллическими модификациями, в этом случае понятия «аллотропия» и «полиморфизм» совпадают для его кристаллических форм.

Нередко также наблюдается явление изоморфизма, при котором два разных по природе вещества образуют кристаллы одинаковой структуры. Такие вещества могут замещать друг друга в кристаллической решетке, образуя смешанные кристаллы. Впервые явление изоморфизма было продемонстрировано немецким минералогом Э. Мичерлихом в 1819 г. на примере КН 2 Р0 4 , KH 2 As0 4 и NH 4 H 2 P0 4 . Смешанные кристаллы являются совершенно однородными смесями твердых веществ - это твердые растворы замещения. Поэтому можно сказать, что изоморфизм - это способность образовывать твердые растворы замещения.

Традиционно кристаллические структуры традиционно делят на гомодесмические (координационные) и гетеродесмические. Гомо- десмическую структуру имеют, например, алмаз, галогениды щелочных металлов. Однако гораздо чаще кристаллические вещества имеют гетеродесмическую структуру; ее характерная черта - присутствие структурных фрагментов, внутри которых атомные остовы соединены наиболее прочными (обычно ковалентными) связями. Эти фрагменты могут представлять собой конечные группировки элементов, цепи, слои, каркасы. Соответственно выделяются островные, цепочечные, слоистые и каркасные структуры. Островными структурами обладают почти все органические соединения и такие неорганические вещества, как галогены, 0 2 , N 2 , С0 2 , N 2 0 4 и др. Роль островов играют молекулы, поэтому такие кристаллы называются молекулярными. Часто в качестве островов выступают многоатомные ионы (например, сульфаты, нитраты, карбонаты). Цепочечное строение имеют, например, кристаллы одной из модификаций Se (атомные остовы связаны в бесконечные спирали) или кристаллы PdCl 2 , в которых присутствуют бесконечные ленты; слоистую структуру - графит, BN, MoS 2 и др.; каркасную структуру - СаТЮ 3 (атомные остовы Ti и О, объединенные ковалентными связями, образуют ажурный каркас, в пустотах которого расположены атомные остовы Са). Часть из этих структур относят к неорганическим (безуглерод- ным) полимерам.

По характеру связи между атомными остовами (в случае гомо- десмических структур) или между структурными фрагментами (в случае гетеродесмических структур) различают: ковалентные (например, SiC, алмаз), ионные, металлические (металлы и интерметаллические соединения) и молекулярные кристаллы. Кристаллы последней группы, в которой структурные фрагменты связаны межмолекулярным взаимодействием, имеют наибольшее число представителей.

Для ковалентных монокристаллов типа алмаза, карборунда и др. характерны тугоплавкость, высокая твердость и износостойкость, что является следствием прочности и направленности ковалентной связи в сочетании с их трехмерной пространственной структурой (полимерные тела).

Ионные кристаллы представляют собой образования, в которых сцепление элементов микроструктуры в виде противоионов обусловлено преимущественно ионными химическими связями. Примером ионных кристаллов являются галогениды щелочных и щелочноземельных металлов, в узлах кристаллической решетки которых находятся чередующиеся положительно заряженные катионы металла и отрицательно заряженные анионы галогена (Na + Cl - , Cs + Cl - , Ca + F^, рис. 7.1).

Рис. 7.1.

В металлических кристаллах сцепление атомных остовов в виде катионов металла обусловлено преимущественно металлическими ненаправленными химическими связями. Данный тип кристаллов характерен для металлов и их сплавов. В узлах кристаллической решетки находятся атомные остовы (катионы), связанные между собой ОЭ (электронным газом). Подробнее структура металлических кристаллических тел будет рассмотрена далее.

Молекулярные кристаллы образованы из молекул, связанных друг с другом ван-дер-ваальсовыми силами или водородной связью. Внутри молекул действует более прочная ковалентная связь (С к преобладает над С и и С м). Фазовые превращения молекулярных кристаллов (плавление, возгонка, полиморфные переходы) происходят, как правило, без разрушения отдельных молекул. Большинство молекулярных кристаллов - кристаллы органических соединений (например, нафталин). Молекулярные кристаллы образуют также такие вещества, как Н 2 , галогены типа J 2 , N 2 , 0 2 , S g , бинарные соединения типа Н 2 0, С0 2 , N 2 0 4 , металлоорганические соединения и некоторые комплексные соединения. К молекулярным кристаллам относятся также кристаллы таких природных полимеров, как белки (рис. 7.2) и нуклеиновые кислоты.

Полимеры, как уже было указано выше, как правило, также относятся к веществам, образующим молекулярные кристаллы. Однако в случае, когда упаковка макромолекул имеет складчатую или фибриллярную конформацию, правильнее было бы говорить о ковалентно-молекулярных кристаллах (рис. 7.3).


Рис. 7.2.


Рис. 7.3.

Это связано с тем, что вдоль одного из периодов решетки (например, периода с в случае полиэтилена, макромолекулы которого находятся в складчатой конформации, образуя ламель) действуют прочные химические (рис. 7.3), преимущественно ковалентные, связи. В то же время вдоль двух других периодов решетки (например, периодов b и с в тех же складчатых кристаллах полиэтилена) действуют уже более слабые силы межмолекулярного взаимодействия .

Деление кристаллов на указанные группы в значительной мере условно, поскольку существуют постепенные переходы от одной группы к другой по мере изменения характера связи в кристалле. Например, среди интерметаллидов - соединений металлов друг с другом - можно выделить группу соединений, в которых снижение металлической компоненты химической связи и соответствующий рост ковалентной и ионной компонент приводят к образованию ХС в соответствии с классическими валентностями. Примерами таких соединений могут служить соединения магния с элементами главной подгруппы IV и V групп Периодической системы, являющимися переходными между металлами и неметаллами (Mg 2 Si, Mg 2 Ge, Mg 2 Sn, Mg 2 Pb, Mg 3 As 2 , Mg 3 Sb 7 , Mg 3 Bi 7), к основным характерным особенностям которых обычно относят следующие:

  • их гетероядерная кристаллическая решетка отличается от гомо- ядерных решеток исходных соединений;
  • в их соединении обычно сохраняется простое кратное соотношение компонентов, позволяющее выразить их состав простой формулой А ш В;? , где А и В - соответствующие элементы; т и п - простые числа;
  • гетероядерные соединения характеризуются новым качеством структуры и свойств в отличие от исходных соединений.

В кристалле структурные элементы (ионы, атомные остовы, молекулы), образующие кристалл, располагаются закономерно по разным направлениям (рис. 7Ла). Обычно пространственное изображение структуры кристаллов представляют схематично (рис.7.45), отмечая точками центры тяжести структурных элементов, включая характеристики решетки.

Плоскости, параллельные координатным плоскостям, находящиеся на расстоянии а, Ь, с друг от друга, делят кристалл на множество равных и параллельно ориентированных параллелепипедов. Наименьший из них называют элементарной ячейкой, их совокупность образует пространственную кристаллическую решетку. Вершины параллелепипеда являются узлами пространственной решетки, с этими узлами совпадают центры тяжести элементов, из которых построен кристалл.

Пространственные кристаллические решетки полностью описывают строение кристалла. Для описания элементарной ячейки кристаллической решетки используют шесть величин: три отрезка, равные расстояниям до ближайших элементарных частиц по осям координат а, Ь, с, и три угла между этими отрезками а, (3, у.

Соотношения между этими величинами определяют форму ячейки, в зависимости от которой все кристаллы разделяют на семь систем (табл. 7.1).

Размер элементарной ячейки кристаллической решетки оценивают отрезки а, Ь, с. Их называют периодами решетки. Зная периоды решетки, можно определить радиус атомного остова элемента. Этот радиус равен половине наименьшего расстояния между частицами в решетке.

О степени сложности решетки судят по числу структурных элементов, приходящихся на одну элементарную ячейку. В простой пространственной решетке (см. рис. 7.4) всегда на одну ячейку приходится один элемент. В каждой ячейке имеется восемь вершин, но


Рис. 7.4. Расположение элементов в кристалле : а - изображение с размещением объема атомного остова элемента; б - пространственное изображение элементарной ячейки и ее параметры

Табл и ца 7.1

Характеристики кристаллических систем

каждый элемент в вершине относится, в свою очередь, к восьми ячейкам. Таким образом, от узла на долю каждой ячейки приходится У 8 объема, а всего узлов в ячейке восемь, и, следовательно, на одну ячейку приходится один структурный элемент.

В сложных пространственных решетках на одну ячейку всегда приходится больше одного структурного элемента, которые наиболее распространены в важнейших чистых металлических соединениях (рис. 7.5).

В ОЦК-решетке кристаллизуются следующие металлы: Fe a , W, V, Сг, Li, Na, К и др. В ГЦК-решетке кристаллизуются Fe y , Ni, Со а, Си, Pb, Pt, Аи, Ag и др. В ГПУ-решетке кристаллизуются Mg, Ti a , Со р, Cd, Zn и др.

Система, период и число структурных элементов, приходящихся на элементарную ячейку, позволяют полностью представить расположение последних в кристалле. В ряде случаев используют дополнительные характеристики кристаллической решетки, обусловленные ее геометрией и отражающие плотность упаковки элемен-


Рис. 7.5. Типы сложных элементарных ячеек кристаллических решеток: а - ОЦК; 6 - ГЦК; в - ГПУ тарных частиц в кристалле. Такими характеристиками являются КЧ и коэффициент компактности.

Число ближайших равноудаленных элементарных частиц определяет координационное число. Например, для простой кубической решетки КЧ будет 6 (Кб); в решетке объемно-центрированного куба (ОЦК) для каждого атомного остова число таких соседей будет равно восьми (К8); для гранецентрированной кубической решетки (ГЦК) КЧ число равно 12 (К 12).

Отношение объема всех элементарных частиц, приходящихся на одну элементарную ячейку, ко всему объему элементарной ячейки определяет коэффициент компактности. Для простой кубической решетки этот коэффициент равен 0,52, для ОЦК - 0,68 и ГЦК - 0,74.

  • Sirotkin R.O. The effect of morphology on the yield behaviour of solution crystallisedpolyethylenes: PhD thesis, University of North London. - London, 2001.

Строение твердого вещества определяется не только взаимным расположением внутри химических частиц, но и размещением самих частиц в пространстве относительно друг друга и расстояниями между ними. В зависимости от расположения частиц в пространстве различают ближний и дальний порядок.

Ближний порядок заключается в том, что частицы вещества закономерно размещаются в пространстве на определенных расстояниях и направлениях друг от друга. Если такая упорядоченность сохраняется или периодически повторяется во всем объеме твердого вещества, то формируется дальний порядок. Иначе говоря, дальний и ближний порядки — это наличие корреляции микроструктуры вещества либо в пределах всего макроскопического образца (дальний), либо в области с ограниченным радиусом (ближний). В зависимости от совокупного (или подавляющего) действия ближнего или дальнего порядка размещения частиц твердое тело может иметь кристаллическое или аморфное состояние.

Наиболее упорядоченным является размещение частиц в кристаллах (от греческого « кристалос » — лед), в которых атомы, молекулы или ионы расположены только в определенных точках пространства, названных узлами .

Кристаллическое состояние — это упорядоченная периодическая структура, которая характеризуется наличием как ближнего, так и дальнего порядка размещения частиц твердого вещества.

Характерным признаком кристаллических веществ по сравнению с аморфными является анизотропия.

Анизотропия — это разница физико-химических свойств кристаллического вещества (электро- и теплопроводности, прочности, оптических характеристик и т.д.) в зависимости от выбранного направления в кристалле.

Анизотропия обусловлена ​​внутренним строением кристаллов. В разных направлениях расстояние между частицами в кристалле разная, поэтому и количественная характеристика того или иного свойства для этих направлений будет разной.

Особенно ярко анизотропия проявляется в монокристаллах. На этом свойстве основано производство лазеров, обработка монокристаллов полупроводников, изготовление кварцевых резонаторов и ультразвуковых генераторов. Типичным примером анизотропного кристаллического вещества является графит, структура которого представляет собой параллельные слои с различными энергиями связи в середине слоев и между отдельными слоями. Благодаря этому теплопроводность вдоль слоев в пять раз выше, чем в перпендикулярном направлении, а электропроводность в направлении отдельного слоя близка к металлической и сотни раз больше электропроводности в перпендикулярном направлении.

Структура графита (указана длина связи С-С внутри слоя и расстояние между отдельными слоями в кристалле)

Иногда одно и то же вещество может образовывать кристаллы различной формы. Это явление называют полиморфизмом, а различные кристаллические формы одного вещества — полиморфными модификациями, например, алотропы алмаз и графит; a-, b-, g- и d-железо; a- и b-кварц (обратите внимание на различие понятий «аллотропия», которое относится исключительно к простым веществам в любом , и «полиморфизм», которое характеризует строение только кристаллических соединений).

В то же время различные по составу вещества могут образовывать кристаллы одинаковой формы — это явление называют изоморфизмом. Так, изоморфными веществами, имеющими одинаковые кристаллические решетки, являются Al и Cr и их оксиды; Ag и Au; BaCl 2 и SrCl 2 ; KMnO 4 и BaSO 4 .

Подавляющее большинство твердых веществ при обычных условиях существует в кристаллическом состоянии.

Твердые вещества, не имеющие периодической структуры, относятся к аморфным (от греческого « аморфос » — бесформенный). Однако некоторая упорядоченность структуры в них присутствует. Она проявляется в закономерном размещении вокруг каждой частицы ее ближних «соседей», то есть аморфные вещества имеют только ближний порядок и этим напоминают жидкости, поэтому их с некоторым приближением можно рассматривать как переохлажденные жидкости с очень высокой вязкостью. Разница между жидким и твердым аморфным состоянием определяется характером теплового движения частиц: в аморфном состоянии они способны лишь к колебательным и вращательным движения, но не могут перемещаться в толще вещества.

Аморфное состояние — это твердое состояние вещества, характеризующееся наличием ближнего порядка в размещении частиц, а также изотропностью — одинаковыми свойствами в любом направлении.

Аморфное состояние веществ менее стабильно по сравнению с кристаллическим, так аморфные вещества могут переходить в кристаллическое состояние под действием механических нагрузок или при изменении температуры. Однако некоторые вещества могут находиться в аморфном состоянии в течение достаточно большого периода. Например, вулканическое стекло (возраст которого доходит до нескольких миллионов лет), обычное стекло, смолы, воск, большинство гидроксидов переходных металлов и тому подобное. При определенных условиях в аморфном состоянии могут находиться почти все вещества, кроме металлов и некоторых ионных соединений. С другой стороны, известны вещества, способные существовать только в аморфном состоянии (органические полимеры с неравномерной последовательностью элементарных звеньев).

Физические и химические свойства вещества в аморфном состоянии могут существенно отличаться от ее свойств в кристаллическом состоянии. Реакционная способность веществ в аморфном состоянии значительно выше, чем в кристаллическом. Например, аморфный GeO 2 значительно активнее в химическом отношении, чем кристаллический.

Переход твердых веществ в жидкое состояние в зависимости от строения имеет свои особенности. Для кристаллического вещества плавления происходит при определенной , которая является фиксированной для данного вещества, и сопровождается скачкообразным изменением ее свойств (плотность, вязкость и т.д.). Аморфные вещества, напротив, переходят в жидкое состояние постепенно, в течение некоторого интервала температур (так называемый интервал размягчения), во время которого происходит плавное, медленное изменение свойств.

Сравнительная характеристика аморфных и кристаллических веществ:

состояние

твердого вещества

характеристика

примеры

аморфное 1. Ближний порядок размещения частиц;

2. Изотропность физических свойств;

3. Отсутствие фиксированной температуры плавления;

4. Термодинамическая нестабильность (большой запас внутренней энергии)

5. Текучесть

Янтарь, стекло, органические полимеры
кристаллическое 1. Дальний порядок размещения частиц;

2. Анизотропнисть физических свойств;

3. Фиксированная температура плавления;

4. Термодинамическая устойчивость (небольшой запас внутренней энергии)

5. Наличие симметрии

Металлы, сплавы, твердые соли, углерод (алмаз, графит).

Нужно помнить, что не все тела, которые существуют на планете Земля, имеют кристаллическое строение. Исключения из правила получили название «аморфные тела». Чем же они отличаются? Исходя из перевода данного термина - аморфный - можно предположить о том, что такие вещества отличаются от других своей формой или видом. Речь идет об отсутствии так называемой кристаллической решетки. Процесс расщепления, при котором появляются грани, не происходит. Аморфные тела также отличаются тем, что не зависят от окружающей среды, и их свойства постоянны. Такие вещества называются изотропными.

Небольшая характеристика аморфных тел

Из школьного курса физики можно вспомнить то, что аморфные вещества имеют такое строение, при котором атомы в них расположены в хаотичном порядке. Определенное место могут иметь лишь структуры-соседи, где такое расположение является вынужденным. Но все же проводя аналогию с кристаллами, аморфные тела не обладают строгой упорядоченностью молекул и атомов (в физике такое свойство получило название «дальний порядок»). В результате исследований было выяснено, что по своей структуре данные вещества схожи с жидкостями.

Некоторые тела (в качестве примера можно взять диоксид кремния, чья формула SiO 2) могут одновременно находиться в аморфном состоянии и иметь кристаллическую структуру. Кварц в первом варианте обладает структурой неправильной решетки, во втором - правильного шестиугольника.

Свойство №1

Как уже говорилось выше, аморфные тела не обладают кристаллической решеткой. Их атомы и молекулы имеют ближний порядок размещения, что и будет первым отличительным свойством данных веществ.

Свойство №2

Текучестью данные тела обделены. Для того чтобы лучше объяснить второе свойство веществ, можно сделать это на примере воска. Ни для кого не секрет, что если налить воду в воронку, то она просто выльется из нее. То же самое будет и с любыми другими текучими веществами. А свойства аморфных тел не позволяют им проделывать такие «трюки». Если воск поместить в воронку, то он предварительно растечется по поверхности и лишь потом начнет стекать с нее. Это связано с тем, что молекулы в веществе перескакивают из одного положения равновесия в абсолютно другое, не имея основного местоположения.

Свойство №3

Пора поговорить о процессе плавления. Следует запомнить тот факт, что аморфные вещества не имеют определенной температуры, при которой начинается плавление. Во время поднятия градуса тело постепенно становится мягче и затем превращается в жидкость. Физики всегда делают упор не на температуре, при которой данный процесс начал происходить, а на соответствующем температурном интервале плавления.

Свойство №4

О нем уже было сказано выше. Аморфные тела изотропны. То есть их свойства в любом направлении неизменны, даже если условия пребывания в местах различны.

Свойство №5

Хоть раз каждый человек наблюдал, что с течением определенного промежутка времени стекла начинали мутнеть. Это свойство аморфных тел связно с повышенной внутренней энергией (она в разы больше, чем у кристаллов). Из-за этого данные вещества спокойно сами могут перейти в кристаллическое состояние.

Переход к кристаллическому состоянию

Спустя определенный промежуток времени любое аморфное тело переходит в кристаллическое состояние. Это можно наблюдать в привычной жизни человека. Например, если оставить леденец или мед на несколько месяцев, то можно заметить, что они оба потеряли свою прозрачность. Обычный человек скажет, что они просто засахарились. И правда, если разломать тело, то можно заметить наличие кристаллов сахара.

Итак, говоря об этом, необходимо уточнить, что самопроизвольное превращение в другое состояние связано с тем, что аморфные вещества неустойчивы. Сравнивая их с кристаллами, можно понять, что последние в разы «мощнее». Объяснить факт можно благодаря межмолекулярной теории. Согласно ей, молекулы постоянно перескакивают с одного места на другое, тем самым заполняя пустоты. Со временем образуется устойчивая кристаллическая решетка.

Плавление аморфных тел

Процессом плавления аморфных тел называется момент, когда с поднятием температуры все связи между атомами рушатся. Именно тогда вещество превращается в жидкость. Если условия плавления таковы, что давление одинаково на протяжении всего периода, то температура также должна быть фиксированной.

Жидкие кристаллы

В природе существуют тела, которые имеют жидкокристаллическую структуру. Как правило, они входят в перечень органических веществ, а их молекулы обладают нитевидной формой. Тела, о которых идет речь, обладают свойствами жидкостей и кристаллов, а именно текучестью и анизотропией.

В таких веществах молекулы располагаются параллельно друг другу, однако, между ними нефиксируемое расстояние. Они движутся постоянно, но ориентацию менять несклонны, поэтому постоянно находятся в одном положении.

Аморфные металлы

Аморфные металлы больше известны обычному человеку под названием металлические стекла.

Еще в 1940 году ученые заговорили о существовании данных тел. Уже тогда стало известно, что специально полученные вакуумным напылением металлы, не имели кристаллических решеток. И лишь через 20 лет было произведено первое стекло такого типа. Особого внимания у ученых оно не вызвало; и только спустя еще 10 лет о нем заговорили американские и японские профессионалы, а потом уже корейские и европейские.

Аморфные металлы отличаются вязкостью, достаточно высоким уровнем прочности и стойкостью к коррозии.

В последнее время интенсивно развивается физика некристаллических веществ, к которым, в частности, относятся аморфорные материалы. Основное отличие аморфных материалов от кристаллов состоит в том, что последние имеют и ближний, и дальний порядок симметрии, а первые – только ближний порядок. Напомним, что ближним порядком называют сохранение симметрии на длине в несколько межатомных расстояний. Соответственно дальний порядок для большинства материалов составляет ~10 нм – расстояние, в области которого сохраняется кристаллический порядок.

Идеальные кристаллы имеют и дальний, и ближний порядок. Даже реальные кристаллы по определению имеют оба порядка. Аморфные же тела – только ближний порядок. Атомы в таком теле располагаются в виде трехмерной непрерывной сетки , сходной с кристаллической решеткой соответствующего кристалла. Однако, в отличие кристаллической решетки, эта сетка неправильная: каждая ячейка немного деформирована. Исчезновение дальнего порядка также может быть связано с разрывом связей и флуктуациями состава в сложных соединениях (рис. 1.12, а ). Структура аморфных тел похожа на структуру жидкостей, что неудивительно, поскольку одним из способов получения аморфных тел является интенсивное охлаждение расплавов (рис. 1.12, б ).

а ) б )

Рис. 1.12. Структура аморфного тела (а ) и график его получения (б )

Сплав вливают на вращающийся вокруг своей оси барабан с жидким азотом (T = 73K). Скорость охлаждения составляет около 10 6 К /c, и расплав не успевает кристаллизироваться, процесс затвердевания идет по верхней кривой и характеризуется не температурой кристаллизации T к , а температурным интервалом Т к Т а (рис. 1,12, б ). На графике видно, что плотность аморфного тела несколько ниже, чем кристалла.

Аморфные материалы иногда называют стеклами. Они обладают иными свойствами, чем кристаллы. Аморфные материалы характеризуются отсутствием таких дефектов, как дислокации, границы зерен и т.д., что обуславливает очень высокую прочность и износостойкость. Так, например, предел прочности аморфных сплавов на основе железа значительно выше, чем у наиболее прочных сталей. Такие свойства аморфных металлов уже используются в головках магнитных записей, микроподшипниках, работающих без смазки и т.д.

В электронике применяются аморфные полупроводники. Их относительно слабая чувствительность к посторонним примесям позволяет использовать для изготовления более простые и дешевые методы, чем в случае выращивания монокристаллов.

В настоящее время наиболее перспективными областями применения аморфных полупроводников считаются следующие.

Электрофотография (ксерография ) – процесс, в котором используются фотопроводящие свойства селенового стекла. Для получения копии сначала обрабатывают верхнюю поверхность пленки из селенового стекла, распыляя по ней положительные ионы. При этом металлическая подложка приобретает отрицательный заряд. Затем пленку освещают отраженным от копируемого оригинала светом. Там, где на оригинале было изображение, свет поглощается; там, где изображения не было, свет отражается от листа и попадает на пленку. Так формируют позитивное изображение на аморфной пленке. После этого краситель притягивается к позитиву, переносится на лист положительно заряженной бумаги и закрепляется нагреванием.


Солнечные батареи – устройства для прямого преобразования световой энергии в электрическую (п. 7.8). Основным материалом для таких батарей является кремний, второй по распространенности в земной коре элемент. Однако сложность и энергоемкость получения чистого кристаллического кремния сдерживают работы в этом направлении. Использование аморфного кремния, малочувствительного к примесям, открывает широкие перспективы.

Переключатели и запоминающие устройства являются основой цифровой электроники. Халькогенидные стекла на основе серы, селена, теллура обладают свойством переходить из одного состояния в другое – переключаться. Эти состояния имеют различную проводимость. На рис. 1.13, а , б приводятся графики ВАХ таких элементов.

Рис. 1.13. Вольт-амперные характеристики с переключением

График на рис. 1.13, а соответствует так называемому пороговому переключению . Приложение к элементу напряжения выше порогового (U п ) приводит к скачку ВАХ с ветви 1 на ветвь 2, что соответствует росту проводимости на шесть порядков (состояние «включено»). Если напряжение, приложенное к элементу, уменьшить до точки возврата, элемент снова переключится в состояние с малой проводимостью.

Эффект переключения связан с особенностями электронной структуры халькогенидных стекол. Установлено, что проводящее состояние включается тогда, когда все присутствующие в стекле положительно и отрицательно заряженные ловушки заполняются носителями заряда. При этом время жизни инжектированных носителей резко возрастает. Если оно до переключения было много меньше времени, за которое носители успевают пересечь пленку, то после переключения время становится намного больше требуемого.

Переключение с запоминанием наблюдается в стеклах, которые могут легко кристаллизоваться. В момент, когда напряжение достигает порогового значения, в стекле образуются кристаллические нити, которые делают возможным запоминание. Стирается такая информация путем пропускания импульса, расплавляющего кристаллическую нить и возвращающего элемент в аморфное состояние.

Контрольные вопросы и задания

1.1. Каков характер сил, действующих в твердом теле?

1.2. Какое положение называют равновесным?

1.3. Дайте определение кристаллической решетки.

1.4. В чем причина изменения структуры твердого тела?

2.1. Дайте определение идеального кристалла.

2.2. Что называют трансляционным вектором?

2.3. Как определяются решетки Бравэ?

2.4. Дайте понятие элементарной ячейки.

2.5. Сколько частиц содержит элементарная ячейка?

2.6. Какова функция индексов Миллера?

2.7. Изобразите графически в кубической решетке плоскости Миллера (011), (211), (121), (121).

3.1. Какие колебания называют нормальными?

3.2. Каков частотный диапазон нормальных колебаний?

3.3. Чем отличается кристалл от непрерывной среды?

3.5. Дайте определение фазовой и групповой скоростей волны.

3.6. Какие колебания называют акустическими?

3.7. Чем отличаются оптические колебания от акустических?

3.8. Дайте определение фонона.

3.9. Как определить энергию фонона?

3.10. Что является причиной теплового расширения кристаллов?

4.1. Дайте определение реального кристалла.

4.2. Какие Вы знаете точечные дефекты?

4.3. Перечислите поверхностные дефекты.

4.4. Как влияет температура на дефектность тела?

4.6. Что можно сказать о движении дефектов?

4.7. Как появляются и исчезают дефекты?

4.8. Сравните концентрацию дефектов по Френкелю при изменении температуры на 100ºC.

5.1. Какие свойства относятся к структурозависимым?

5.2. Как влияют дефекты на электропроводность металлов?

5.3. Как влияют дефекты на электропроводность полупроводников?

5.4. Что называют центрами окраски?

5.5. Какие дефекты определяют механическую прочность твердых тел?

5.6. Объясните механизм упрочняющих операций.

6.1. Дайте определение жидких кристаллов.

6.2. Что представляет собой ближний порядок симметрии?

6.3. Какова структура нематических жидких кристаллов (ЖК)?

6.4 Какова структура холестерических ЖК?

6.5. Какова структура смектических ЖК?

6.6. Какие факторы влияют на структуры и свойства жидких кристаллов?

6.7. Назовите области применения жидких кристаллов.

7.1. Дайте определение аморфного состояния.

7.2. Назовите способы получения аморфных тел.

7.3. Опишите свойства аморфных полупроводников.

7.4. Где применяются аморфные металлы?

7.5. Где и как используются аморфные полупроводники?

7.6. Опишите механизм эффектов переключения.

Глава 2
ФИЗИЧЕСКИЕ ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.