Гидролиз простых эфиров в кислой среде. Химические свойства. Сложные эфиры – типичные электрофилы. А. Механизмы гидролиза сложных эфиров

Гидролиз сложных эфиров катализируется как кислотами, так и основаниями. Кислотный гидролиз сложных эфиров проводят обычно при нагревании с соляной или серной кислотой в водной или водно-спиртовой среде. В органическом синтезе кислотный гидролиз сложных эфиров чаще всего применяется для моно- и диалкилзамещенных малоновых эфиров (глава 17). Моно- и дизамещенные производные малонового эфира при кипячении с концентрированной соляной кислотой подвергается гидролизу с последующим декарбоксилированием.

Для гидролиза, катализируемого основанием, обычно используют водный или водно-спиртовый раствор NaOH или KOH. Наилучшие результаты достигаются при применении тонкой суспензии гидроксида калия в ДМСО, содержащем небольшое количество воды.

Последний способ предпочтителен для омыления сложных эфиров пространственно-затрудненных кислот, другой модификацией этого метода является щелочной гидролиз пространственно-затрудненных сложных эфиров в присутствии 18-краун-6-полиэфира:

Для препаративных целей гидролиз, катализируемый основанием, имеет ряд очевидных преимуществ по сравнению с кислотным гидролизом. Скорость основного гидролиза сложных эфиров, как правило в тысячу раз выше, чем при кислотном катализе. Гидролиз в кислой среде является обратимым процессом, в отличие от гидролиза в присутствии основания, который необратим.

18.8.2.А. Механизмы гидролиза сложных эфиров

Гидролиз сложных эфиров чистой водой в большинстве случаев обратимая реакция, приводящая к равновесной смеси карбоновой кислоты и исходного сложного эфира:

Эта реакция в кислой и щелочной средах сильно ускоряется, что связано с кислотно-основным катализом (гл. 3).

Согласно К. Ингольду механизмы гидролиза сложных эфиров классифицируются по следующим критериям:

(1) Тип катализа: кислотный (символ А) или основной (символ В);

(2) Тип расщепления, показывающий, какая из двух -связей С-О в сложном эфире расщепляется в результате реакции: ацил-кислород (индекс АС) или алкил-кислород (индекс АL):

(3) Молекулярность реакции (1 или 2).

Из этих трех критериев можно составить восемь различных комбинаций, которые приведены на схеме 18.1.

Это наиболее часто встречающиеся механизмы. Щелочное омыление практически всегда относится к типу В АС 2. Кислотный гидролиз (а также этерификация) в большинстве случаев имеет механизм А АС 2.

Механизм А АС 1 обычно наблюдается только в сильно кислых растворах (например, в конц. H 2 SO 4), и особенно часто для эфиров пространственно затрудненных ароматических кислот.

Механизм В АС 1 пока неизвестен.

Механизм В АL 2 найден только в случае исключительно сильного пространственно экранированных ацильных групп и нейтрального гидролиза -лактонов. Механизм А AL 2 пока неизвестен.

По механизму А AL 1 обычно реагируют третично-алкильные сложные эфиры в нейтральной или кислой среде. Эти же субстраты в подобных условиях могут реагировать по механизму В АL 1, однако при переходе в чуть более щелочную среду механизм В АL 1 сейчас же сменяется на механизм В АС 2.

Как видно из схемы 18.1, реакции, катализируемые кислотами, обратимы, и из принципа микроскопической обратимости (гл.2) следует, что и катализируемая кислотами этерификация тоже протекает по подобным механизмам. Однако при катализе основаниями равновесие сдвинуто в сторону гидролиза (омыления), поскольку равновесие сдвигается вследствие ионизации карбоновой кислоты. Согласно приведенной схеме в случае механизма А АС 1 группы COOR и COOH протонируются по алкоксильному или гидроксильному атому кислорода. Вообще говоря, с точки зрения термодинамики более выгодно протонирование карбонильного кислорода, группы C=O, т.к. в этом случае положительный заряд может делокализоваться между обоими атомами кислорода:

Тем не менее в небольших количествах в растворе содержится и таутомерный катион - необходимый интермедиат в механизме А АС 1. Оба В1 - механизма (из которых В АС 1 неизвестен) на самом деле вовсе не каталитические, ибо в начале происходит диссоциация нейтрального эфира.

Из восьми ингольдовских механизмов экспериментально доказаны лишь шесть.

Сложные эфиры - производные кислот, у которых кислотный водород заменён на алкильные (или вообще углеводородные) радикалы.

Сложные эфиры делятся в зависимости от того, производной какой кислоты они являются (неорганической или карбоновой).

Среди сложных эфиров особое место занимают природные эфиры - жиры и масла, которые образованы трехатомным спиртом глицерином и высшими жирными кислотами, содержащими четное число углеродных атомов. Жиры входят в состав растительных и животных организмов и служат одним из источников энергии живых организмов, которая выделяется при окислении жиров.

Общая формула сложных эфиров карбоновых кислот:

где R и R" - углеводородные радикалы (в сложных эфиpax муравьиной кислоты R - атом водорода).

Общая формула жиров:

гдеR", R", R"" - углеродные радикалы.

Жиры бывают “простыми” и “смешанными”. В состав простых жиров входят остатки одинаковых кислот (т. е. R’ = R" = R""), в состав смешанных - различных.

В жирах наиболее часто встречаются следующие жирные кислоты:

1. Масляная кислота СН 3 - (CH 2) 2 - СООН

3. Пальмитиновая кислота СН 3 - (CH 2) 14 - СООН

4. Стеариновая кислота СН 3 - (CH 2) 16 - СООН

5. Олеиновая кислота С 17 Н 33 СООН

СН 3 -(СН 2) 7 -СН === СН-(СН 2) 7 -СООН

6. Линолевая кислота С 17 Н 31 СООН

СН 3 -(СН 2) 4 -СН = СН-СН 2 -СН = СН-СООН

7. Линоленовая кислота С 17 Н 29 СООН

СН 3 СН 2 СН = CHCH 2 CH == CHCH 2 CH = СН(СН 2) 4 СООН

Для сложных эфиров характерны следующие виды изомерии:

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку - с пропилового спирта, например, этилбутирату изомерны этилизобутират, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки -СО-О-. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия, например, метилацетату изомерна пропановая кислота.

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и цис-, транс-изомерия.

Сложные эфиры низших карбоновых кислот и спиртов представляют собой летучие, нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат - груши и т. д.

Сложные эфиры высших жирных кислот и спиртов - воскообразные вещества, не имеют запаха, в воде не растворимы.

Приятный аромат цветов, плодов, ягод в значительной степени обусловлен присутствием в них тех или иных сложных эфиров.

Жиры широко распространены в природе. Наряду с углеводородами и белками они входят в состав всех растительных и животных организмов и составляют одну из основных частей нашей пищи.

По агрегатному состоянию при комнатной температуре жиры делятся на жидкие и твердые. Твердые жиры, как правило, образованы предельными кислотами, жидкие жиры (их часто называют маслами) - непредельными. Жиры растворимы в органических растворителях и нерастворимы в воде.

1. Реакция гидролиза, или омыления. Так, как реакция этерификации является обратимой, поэтому в присутствии кислот протекает обратная реакция гидролиза:

Реакция гидролиза катализируется и щелочами; в этом случае гидролиз необратим, так как получающаяся кислота со щелочью образует соль:

2. Реакция присоединения. Сложные эфиры, имеющие в своем составе непредельную кислоту или спирт, способны к реакциям присоединения.

3. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

4. Реакция образования амидов. Под действием аммиака сложные эфиры превращаются в амиды кислот и спирты:

Получение. 1. Реакция этерификации:

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

Реакционная способность одноатомных спиртов в этих реакциях убывает от первичных к третичным.

2. Взаимодействием ангидридов кислот со спиртами:

3. Взаимодействием галоидангидридов кислот со спиртами:

Механизм гидролиза:

Жидкие жиры превращаются в твердые путем реакции гидрогенизации. Водород присоединяется по месту разрыва двойной связи в углеводородных радикалах молекул жиров:

Реакция протекает при нагревании под давлением и в присутствии катализатора - мелко раздробленного никеля. Продукт гидрогенизации - твердый жир (искусственное сало), называется саломасом идет на производство мыла, стеарина и глицерина. Маргарин - пищевой жир, состоит из смеси гидрогенизованных масел (подсолнечного, хлопкового и др.), животных жиров, молока и некоторых других веществ (соли, сахара, витаминов и др.).

Важное химическое свойство жиров, как и всех сложных эфиров, - способность подвергаться гидролизу (омылению). Гидролиз легко протекает при нагревании в присутствии катализаторов - кислот, щелочей, оксидов магния, кальция, цинка:

Реакция гидролиза жиров обратима. Однако при участии щелочей она доходит практически до конца - щелочи превращают образующиеся кислоты в соли и тем самым устраняют возможность взаимодействия кислот с глицерином (обратную реакцию).

"

Сложные эфиры – типичные электрофилы. Из-за +М-эффекта атома кислорода, связанного с углеводородным радикалом, они проявляют менее выраженный электрофильный характер по сравнению с галогенангидридами и ангидридами кислот:

Электрофильность эфиров увеличивается, если углеводородный радикал образует с атомом кислорода сопряженную систему, т. н. активированные эфиры:

Сложные эфиры вступают в реакции нуклеофильного замещения.

1. Гидролиз сложных эфиров проходит как в кислой, так и в щелочной среде.

Кислотный гидролиз сложных эфиров – последовательность обратимых превращений, противоположных реакции этерификации:

Механизм этой реакции включает протонирование атома кислорода карбонильной группы с образованием карбкатиона, который реагирует с молекулой воды:

Щелочной гидролиз. Гидролиз в присутствии водных растворов щелочей проходит легче, чем кислотный потому, что гидроксид-анион более активный и менее объемный нуклеофил, чем вода. В отличие от кислотного, щелочной гидролиз необратим:

Щелочь выступает не в роли катализатора, а в роли реагента. Гидролиз начинается с нуклеофильной атаки гидроксид-ионом атома углерода карбонильной группы. Образуется промежуточный анион, который отщепляет алкоксид-ион и превращается в молекулу карбоновой кислоты. Алкоксид-ион, как более сильное основание, отрывает протон от молекулы кислоты и превращается в молекулу спирта:

Щелочной гидролиз необратим потому, что карбоксилат-анион имеет высокую делокализацию отрицательного заряда и не восприимчив к атаке спиртового гидроксила.

Часто щелочной гидролиз сложных эфиров называют омылением. Термин произошел от названия продуктов щелочного гидролиза жиров – мыла.

2. Взаимодействие с аммиаком (иммонолиз) и его производными протекает по механизму, аналогичному щелочному гидролизу:

3. Реакция переэтерификации (алкоголиз сложных эфиров) катализируется как минеральными кислотами, так и шеломами:

Для смешения равновесия вправо отгоняют более летучий спирт.

4. Сложноэфирная конденсация Кляйзена характерна для эфиров карбоновых кислот, содержащих атомы водорода в α-положении. Реакция протекает в присутствии сильных оснований:

Алкоксид-ион отщепляет протон от α-углеродного атома молекулы эфира. Образуется мезомерно стабилизированный карбанион (I), который, выступая в роли нуклеофила, атакует атом углерода карбонильной группы второй молекулы эфира. Образуется продукт присоединения (II). Он отщепляет алкоксид-ион и превращается в конечный продукт (III). Таким образом, всю схему механизма реакции можно разделить на три стадии:

Если в реакцию вступают два сложных эфира, содержащие α-атомы водорода, то образуется смесь четырех возможных продуктов. Реакция используется для промышленного получения ацетоуксусного эфира.

5. Восстановление сложных эфиров:

Первичные спирты образуются при действии газообразного водорода в присутствии скелетного никелевого катализатора (никель Ренея).

6. Действие магнийорганических соединений с последующим гидролизом приводит к образованию третичных спиртов.

Структурная формула сложных эфиров в общем виде:

где R и R’ - углеводородные радикалы.

Гидролиз сложных эфиров

Одной из наиболее характерных для сложных эфиров способностей (помимо этерификации) является их гидролиз - расщепление под действием воды. По-другому гидролиз сложных эфиров называют омылением. В отличие от гидролиза солей в данном случае он практически необратим. Различают щелочной и кислотный гидролиз сложных эфиров. В обоих случаях образуются спирт и кислота:

а) кислотный гидролиз

б) щелочной гидролиз

Примеры решения задач

Щелочной гидролиз — сложный эфир

Cтраница 1

Щелочной гидролиз сложных эфиров, как и кислотный, протекает по механизму присоединения — отщепления.  

Щелочной гидролиз сложных эфиров, который иногда называют реакцией специфического основного катализа, в действительности представляет собой реакцию замещения (см. разд.  

Щелочной гидролиз сложных эфиров по механизму Вас2 протекает через нуклеофильное присоединение по карбонильной группе с образованием тетраэдрического интермедиата (см. разд. Это общая реакция нуклеофилов с карбонильной группой эфира, и различные примеры ее применения будут рассмотрены ниже в настоящем разделе. Взаимодействие с гидрид-ионами приводит к восстановлению, поэтому эта реакция будет обсуждаться вместе с другими реакциями восстановления (см. разд.  

Щелочной гидролиз сложных эфиров протекает с тепловым эффектом, равным теплоте нейтрализации образующейся кислоты. Экзотермическими являются и реакции этерификации спиртов хлорангидридами кислот, а также первая стадия этерификации ангидридами кислот.

Щелочной гидролиз сложных эфиров — реакция необратимая, так как конечный продукт реакции (карбоксилат-анион) не проявляет свойств карбонильного соединения вследствие полной делокалнзации отрицательного заряда.  

Щелочной гидролиз сложных эфиров протекает с тепловым эффектом, равным теплоте нейтрализации образующейся кислоты. Экзотермическими являются и реакции этерификации спиртов хлорангидридами кислот, а также первая стадия этерификации ангидридами кислот.  

Щелочной гидролиз сложных эфиров называют — омылением. Скорость гидролиза эфиров возрастает также при нагревании и в случае применения избытка воды.  

Щелочной гидролиз сложных эфиров характерен для большого числа реакций, в которых отрицательно заряженный нуклеофил атакует карбонильный углерод нейтрального субстрата.  

Щелочной гидролиз сложных эфиров называют омылением. Скорость гидролиза эфиров возрастает также при нагревании и в случае применения избытка воды.  

Практически щелочной гидролиз сложных эфиров проводят в присутствии едких щелочей КОН, NaOH, а также гидроокисей щелочноземельных металлов Ва (ОН) 2, Са (ОН) 2 — Образующиеся при гидролизе кислоты связываются в виде солей соответствующих металлов, поэтому гидроокиси приходится брать по крайней мере в эквивалентном отношении со сложным эфиром. Обычно используют избыток основания. Выделение кислот из их солей осуществляется с помощью сильных минеральных кислот.  

Реакция щелочного гидролиза сложных эфиров называется ре акцией омыления.  

Реакция щелочного гидролиза сложных эфиров называется реакцией омыления.  

Метод щелочного гидролиза сложных эфиров входит как состав — пая часть п различные многостадийные процессы органического синтеза. Например, он используется в промышленном производстве жирных кислпт и спиртов окислением парафинов (гл.  

Страницы:      1    2    3    4

4.6. Сложные эфиры

Cложные эфиры могут быть получены при взаимодействии карбоновых кислот со спиртами (реакция этерификации ). Катализаторами являются минеральные кислоты.

Видеоопыт "Получение уксусноэтилового эфира".

Реакция этерификации в условиях кислотного катализа обратима.

Обратный процесс – расщепление сложного эфира при действии воды с образованием карбоновой кислоты и спирта – называют гидролизом сложного эфира . RCOOR’ + H2O (H+) RCOOH + R’OH Гидролиз в присутствии щелочи протекает необратимо (т.к. образующийся отрицательно заряженный карбоксилат-анион RCOO– не вступает в реакцию с нуклеофильным реагентом – спиртом).

Эта реакция называется омылением сложных эфиров (по аналогии со щелочным гидролизом сложноэфирных связей в жирах при получении мыла).

Эфиры низших карбоновых кислот и низших одноатомных спиртов имеют приятный запах цветов, ягод и фруктов. Эфиры высших одноосновных кислот и высших одноатомных спиртов – основа природных восков. Например, пчелиный воск содержит сложный эфир пальмитиновой кислоты и мирицилового спирта (мирицилпальмитат):

CH(CH)–CO–O–(CH)CH

Химические свойства — раздел Химия, ОБЩИЕ ЗАКОНОМЕРНОСТИ СТРОЕНИЯ И ХИМИЧЕСКОГО ПОВЕДЕНИЯ ОКСОСОЕДИНЕНИЙ 1. Гидролиз Сложных Эфиров (Кислый И Щелочной Катализ). …

1. Гидролиз сложных эфиров (кислый и щелочной катализ). Сложный эфир – слабое ацилирующее средство, его можно подвергнуть гидролизу в присутствии катализаторов (кислот или оснований).

1.1 Щелочной гидролиз:

Механизм щелочного гидролиза:

Щелочной гидролиз имеет ряд преимуществ перед кислотным:

  • протекает с большей скоростью, так как гидроксид-анион является более сильным и меньшим по объему нуклеофилом по сравнению с молекулой воды;
  • в щелочной среде реакция гидролиза необратима, поскольку образуется соль кислоты, не обладающая ацилирующей способностью.

Поэтому на практике гидролиз сложных эфиров чаще проводят в щелочной среде.

1.2 Кислотный гидролиз:

2. Реакция переэтерификации. Взаимодействие с алкоксидами в растворе соответствующего спирта ведет к обмену алкильных групп сложного эфира, реакция является обратимой:

3. Реакция аммонолиза:

Сложные эфиры в природе, их значение в промышленности. Вкачестве растворителей находят широкое применение наименее реакционноспособные производные карбоновых кислот – сложные эфиры, амиды, нитрилы.

Промышленное и препаративное значение имеют этилацетат, диметилформамид и ацетонитрил. Диметилформамид является апротонным растворителем как для полярных (даже соли), так и неполярных веществ и в настоящее время широко применяется в промышленности как растворитель для полиамидов, полиимидов, полиакрилонитрила, полиуретанов и др., используется для формирования волокон и пленок, приготовления клея и т. д., а также в лабораторной практике.

Сложные эфиры низших карбоновых кислот (С1 – С5 ) и низших спиртов (СН3ОН , С2Н5ОН) обладают фруктовым запахом – применяются для отдушки мыла и в кондитерских изделиях. Ацетаты, бутираты цитронеллола, гераниола, линалоола, обладающие приятным цветочным запахом, входят, например, в состав лавандового масла и применяются для изготовления мыла и одеколонов.

Сложные эфиры дифенилуксусной кислоты, например, диэтиламиноэтиловый эфир (спазмолитин), известны как спазмолитики – средства, снимающие спазмы гладкой мускулатуры внутренних органов и кровеносных сосудов. Анестезин – этиловый эфир n -аминобензойной кислоты, новокаин – диэтиламиноэтиловый эфир n -аминобензойной кислоты, парализуя нервные окончания, вызывают местную анестезию, обезболивание. Более сильным, чем новокаин, является ксикаин (N- 2,6-диметилфениламид N,N’ -диэтиламиноуксусной кислоты).

Этилацетат – бесцветная жидкость, находит применение в качестве растворителя для растворения нитроцеллюлозы, ацетилцеллюлозы и других полимерных материалов, для изготовления лаков, а также в пищевой промышленности и парфюмерии.

Бутилацетат – бесцветная жидкость с приятным запахом. Используют в лакокрасочной промышленности как растворитель нитроцеллюлозы и полиэфирных смол.

Амилацетаты – хорошие растворители для нитроцеллюлозы и других полимерных материалов. Изоамилацетат используется в пищевой промышленности (грушевая эссенция).

Искусственные фруктовые эссенции . Многие сложные эфиры имеют приятный запах и используются в пищевой промышленности и парфюмерии.

Все темы данного раздела:

ОБЩИЕ ЗАКОНОМЕРНОСТИ СТРОЕНИЯ И ХИМИЧЕСКОГО ПОВЕДЕНИЯ ОКСОСОЕДИНЕНИЙ
Кратные связи между углеродом и кислородом встречаются в альдегидах, кетонах, карбоновых кислотах, а также в их производных. Для соединений, содержащих карбонильную группу, наиболее характерными яв

ОКСОСОЕДИНЕНИЯ
Альдегиды и кетоны – это производные углеводородов, которые содержат в молекуле функциональную группу, носящую название карбонильной или оксогруппы. Если карбонильная группа связана с одни

Технические способы получения формальдегида
3.1 Каталитическое окисление метанола: 3.2 Ка

Специфические методы для ароматического ряда
11.1 Окисление алкиларенов. Частичное окисление алкилной группы, связанной с бензольным кольцом, можно осуществить действием различных окислителей. Метильная группа – MnO

Реакции нуклеофильного присоединения
1.1 Присоединение магнийалкилов: где

Реакции окисления альдегидов и кетонов
5.1 Окисление альдегидов. Альдегиды окисляются наиболее легко, превращаясь в карбоновые кислоты с тем же числом атомов углерода в цепи:

Реакции окисления-восстановления (диспропорционирования)
6.1 Реакция Канниццаро (1853 г.) характерна для альдегидов, не содержащих в α-положении водородных атомов, и происходит при их обработке концентрированными р

КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ
Карбоновые кислоты – это производные углеводородов, содержащие в молекуле карбоксильную функциональную группу (–СООН). Это наиболее «окисленная» функциональная группа, что легко проследить,

МОНОКАРБОНОВЫЕ КИСЛОТЫ
Монокарбоновые кислоты– это производные углеводородов, содержащие в молекуле одну функциональную карбоксильную группу – СООН. Монокарбоновые кислоты называют также однооснов

Изомерия
Структурная: · скелетная; · метамерия Пространственная: · оптическая. Методы синтеза. Монокарбоновые

Реакции карбоновых кислот с нуклеофильными реагентами
1.1 Oбразование солей с металлами:

ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ
Карбоновые кислоты образуют разнообразные производные (сложные эфиры, ангидриды, амиды и др.), которые участвуют во многих важных реакциях. Общая формула производных

Способы получения
1. Взаимодействие с хлоридом фосфора (V):

Химические свойства
1. Использование ангидридов как ацилирующих средств.

Ангидриды, как и галогенангидриды, обладают большой химической активностью, являются хорошими ацилирующими средствами (част

Способы получения амидов
1. Ацилирование аммиака:

Химические свойства
1. Гидролиз амидов 1.1 В кислой среде:

Способы получения
1. Реакция этерификации: Механизм этерифика

ДИКАРБОНОВЫЕ КИСЛОТЫ
К классу дикарбоновых кислот относятся соединения, содержащие две карбоксильные группы. Дикарбоновые кислоты подразделяют в зависимости от типа углеводородного радикала: ·

Общие способы получения дикарбоновых кислот
1. Окисление диолов и циклических кетонов:

Изомерия
Структурная: · скелетная; · изомерия положения; · метамерия. Пространственная: · геометрическая. Непредел

Химические свойства жиров
1. Гидролиз. Среди реакций жиров особое значение имеет гидролиз, или омыление, которое можно осуществить как кислотами, так и основаниями:

ОСОБЕННОСТИ ФИЗИЧЕСКИХ СВОЙСТВ ГОМО-ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ
Наличие функциональной группы, связанной с углеводородным заместителем, существенным образом сказывается на физических свойствах соединений. В зависимости от природы функциональной группы (атома) е

УГЛЕВОДОРОДОВ
Среди множества различных функциональных производных углеводородов имеются соединения высокотоксичные и опасные для окружающей среды, умеренно токсичные и совершенно безвредные, нетоксичные, широко

При нагревании сложных эфиров со спиртами протекает реакция двойного обмена, именуемая переэтерификацией. На эту реакцию оказывают каталитическое действие как кислоты, так и основания:

Для смещения равновесия в желаемом направлении применяют большой избыток спирта.

Бутиловый эфир метакриловой кислоты (бутилметакрилат) может быть получен с выходом 94% при нагревании метилметакрилата с н -бутанолом при непрерывном удалении метанола по мере его образования:

Алкоголиз сложных эфиров карбоновых кислот под влиянием щелочных катализаторов имеет особенно большое препаративное значение для синтеза эфиров термически нестабильных карбоновых кислот с длинной боковой цепью (например эфиров b -кетокислот) и эфиров спиртов, неустойчивых в кислых средах, которые нельзя получать обычными методами этерификации. В качестве катализаторов таких реакций применяют алкоголяты натрия, гидроксид натрия и карбонат калия.

Алкоголиз эфиров b -кетокислот легко осуществляется при 90-100°С без катализатора. Например, таким методом из ацетоуксусного эфира синтезирован октиловый эфир ацетоуксусной кислоты:

Так удается провести обменное замещение первичного спирта другим первичным или вторичным спиртом с более высокой температурой кипения, однако для получения сложных эфиров из третичных спиртов этот способ не пригоден. Эфиры третичных спиртов получают другим способом — взаимной переэтерификацией двух различных эфиров карбоновых кислот, например эфира муравьиной кислоты и какой-либо другой кислоты:

Реакцию проводят в присутствии каталитических количеств трет -бутилата натрия при 100-120°С.

При этом медленно отгоняется наиболее низкокипящий компонент равновесной смеси, в данном случае – метиловый эфир муравьиной кислоты (метилформиат, т. кип. 34°С).

Не нашли то, что искали? Воспользуйтесь поиском:

Гидролиз — простой эфир

Cтраница 1

Гидролиз простых эфиров в сильнокислой среде (разд.  

Впоследствии гидролиз простых эфиров стал представлять интерес с точки зрения теории химического строения, а именно в качестве реакции, с помощью которой можно определить относительную прочность углерод-кислородной связи в зависимости от строения радикала. В 30 — х годах появилась практическая потребность в разработке технически приемлемого способа гидролиза диэтилового эфира; эта потребность была продиктована тем, что в процессе производства синтетического каучука по способу Лебедева побочно образовывался эфир, который целесообразно было превращать в спирт. В этой связи в СССР гидролиз диэтилового эфира изучали Ваншейдт и Лозовская и Каган, Российская и Чернцов , применяя в качестве катализаторов окислы алюминия, титана, тория, хрома и марганца.  

В патентной литературе описан гидролиз простых эфиров с образованием спиртов под действием разбавленной серной кислоты при высоких температуре и давлении ; процесс был проведен при 272 С и 130 атм в течение 25 мин. Этот метод используют лишь в том случае, когда необходимо утилизировать избыток этилового эфира.  

В патентной литературе описан гидролиз простых эфиров с образованием спиртов под действием разбавленной серной кислоты при высоких температуре и давлении [ 22J; процесс был проведен при 272 С и 130 атм в течение 25 мин. Этот метод используют лишь в том случае, когда необходимо утилизировать избыток этилового эфира.  

Удаление ацетальдегида из сферы реакции в виде оксима обусловливает полноту гидролиза простого эфира. Не мешают определению вода, спирты, углеводороды.  

Аналогично катализируется гидролиз пептидов , амидов и эфиров фосфорной кислоты и гидратация пиридиновых альдегидов. Гидролиз простых эфиров не катализируется ионами металлов, так как не происходит образования хелатов и промежуточное соединение не может быть стабилизировано.  

Общий кислотно-основной катализ встречается очень часто, но существует несколько случаев, в которых проявляется специфический катализ ионами водорода или гидроксила; в этом случае константа скорости линейно изменяется с [ Н3О ] и [ ОН — ] и не зависит от присутствия других кислых и основных веществ. Например, специфический катализ был обнаружен при гидролизе простых эфиров (см. стр.  

Расщепление хлористым алюминием эфиров фенола дает готовый метод для получения трудно синтезируемых производных фенолов; здесь перечислены некоторые характерные превращения эфиров фенола в соответствующие фенолы. Несмотря на то, что расщепление алкоксигрупп так легко катализируется хлористым алюминием, не имеется никакого методического исследования о влиянии заместителей на катализируемый хлористым алюминием гидролиз простых эфиров.  

Однако для успешного проведения реакции необходимо наличие двух, например, метоксильных групп в молекуле азосо-ставляющей или применения очень активной диазосоставляю-щей. Интересно, что при азосочетании эфиров фенолов часто происходит гидролиз эфирной группировки, так что в результате образуется азокраситель, являющийся производным самого фенола. Напомним, что вообще гидролиз простых эфиров проходит очень трудно. Механизм этой реакции не исследован.  

В заключение можно сказать, что проведение омыления в условиях МФК синтетически выгодно в случае стерически затрудненных эфиров. При этом следует использовать систему твердый гидроксид калия / толуол и краун-зфиры или криптанды в качестве катализаторов. Кроме того, скорость гидролиза простых эфиров карбоновых кислот концентрированным водным раствором гидроксида натрия значительно выше для гидрофильных карбоксилатов. Хорошими катализаторами являются четвертичные аммониевые соли, особенно Bu4NHSO4 и некоторые анионные и неионные ПАВ. Это указывает на то, что может осуществляться любой из трех возможных механизмов: реакции на поверхности, мицеллярный катализ или истинная МФК-реакция. В зависимости от условий может реализоваться каждый из этих механизмов.  

Мы получим в результате следующие значения ДЯ сраВн: 311 для HI, 318 для НВг, 329 для НС1, 334 для воды и 334 для ROH. Таким образом, мы можем предсказать, что наибольшую реакционную способность будет иметь HI, в полном согласии с опытом, хотя на практике применяются концентрированные водные растворы, тогда как наши вычисления производились для реакций в газовой фазе. Хорошо известно, что при комнатной температуре простые эфиры практически не способны реагировать с водой и спиртами. Кроме того, принято говорить, что гидролиз простых эфиров ускоряется водородными, а не гидроксильными ионами, что находится в согласии с нуклеофильными свойствами, установленными для эфиров нашими приближенными вычислениями, Присоединение галоидоводородов к олефинам. В первую очередь надо установить, является ли определяющей скорость стадией элек-трофильная атака водородного иона или нуклеофильная атака галоидного иона на углеродный атом олефина.  

Простые эфиры представляют собой плохо растворимые в воде нейтральные жидкости. Они не реагируют с металлическим натрием, что позволяет удалять из них остатки воды и спирта с помощью металлического натрия. Простые эфиры отличаются большой прочностью.

Слабые кислоты и щелочи на них не действуют. Щелочи не способствуют гидролизу простых эфиров. Наряду с такой устойчивостью к гидролизу простые эфиры довольно легко окисляются кислородом воздуха, особенно под влиянием света, образуя перекиси (стр. Сложные эфиры, как правило, трудно растворимы в воде, но легко растворяются в большинстве органических растворителей. Многие из сложных эфиров обладают специфическим, приятным фруктовым запахом, что позволяет применять их для изготовления искусственных фруктовых эссенций в кондитерском деле или в парфюмерии, а также для идентификации некоторых кислот или спиртов по запаху их эфиров.  

Простые эфиры представляют собой плохо растворимые в воде нейтральные жидкости. Они не реагируют с металлическим натрием, что позволяет удалять из них остатки воды и спирта с помощью металлического натрия. Простые эфиры отличаются большой прочностью. Слабые кислоты и щелочи на них не действуют. Гидролиз простых эфиров протекает с трудом при нагревании с водой в присутствии кислот. Щелочи не способствуют гидролизу простых эфиров. Наряду с такой устойчивостью к гидролизу простые эфиры довольно легко окисляются кислородом воздуха, особенно под влиянием света, образуя перекиси (стр. Сложные эфиры, как правило, трудно растворимы в воде, но легко растворяются в большинстве органических растворителей. Многие из сложных эфиров обладают специфическим, приятным фруктовым запахом, что позволяет применять их для изготовления искусственных фруктовых эссенций в кондитерском деле или в парфюмерии, а также для идентификации некоторых кислот или спиртов по запаху их эфиров.  

Страницы:      1

Гидролиз сложных эфиров катализируется как кислотами, так и основаниями. Кислотный гидролиз сложных эфиров проводят обычно при нагревании с соляной или серной кислотой в водной или водно-спиртовой среде. В органическом синтезе кислотный гидролиз сложных эфиров чаще всего применяется для моно- и диалкилзамещенных малоновых эфиров (глава 17). Моно- и дизамещенные производные малонового эфира при кипячении с концентрированной соляной кислотой подвергается гидролизу с последующим декарбоксилированием.

Для гидролиза, катализируемого основанием, обычно используют водный или водно-спиртовый раствор NaOH или KOH. Наилучшие результаты достигаются при применении тонкой суспензии гидроксида калия в ДМСО, содержащем небольшое количество воды.

Последний способ предпочтителен для омыления сложных эфиров пространственно-затрудненных кислот, другой модификацией этого метода является щелочной гидролиз пространственно-затрудненных сложных эфиров в присутствии 18-краун-6-полиэфира:

Для препаративных целей гидролиз, катализируемый основанием, имеет ряд очевидных преимуществ по сравнению с кислотным гидролизом. Скорость основного гидролиза сложных эфиров, как правило в тысячу раз выше, чем при кислотном катализе. Гидролиз в кислой среде является обратимым процессом, в отличие от гидролиза в присутствии основания, который необратим.

18.8.2.А. Механизмы гидролиза сложных эфиров

Гидролиз сложных эфиров чистой водой в большинстве случаев обратимая реакция, приводящая к равновесной смеси карбоновой кислоты и исходного сложного эфира:

Эта реакция в кислой и щелочной средах сильно ускоряется, что связано с кислотно-основным катализом (гл. 3).

Согласно К. Ингольду механизмы гидролиза сложных эфиров классифицируются по следующим критериям:

(1) Тип катализа: кислотный (символ А) или основной (символ В);

(2) Тип расщепления, показывающий, какая из двух -связей С-О в сложном эфире расщепляется в результате реакции: ацил-кислород (индекс АС) или алкил-кислород (индекс АL):

(3) Молекулярность реакции (1 или 2).

Из этих трех критериев можно составить восемь различных комбинаций, которые приведены на схеме 18.1.

Это наиболее часто встречающиеся механизмы. Щелочное омыление практически всегда относится к типу В АС 2. Кислотный гидролиз (а также этерификация) в большинстве случаев имеет механизм А АС 2.

Механизм А АС 1 обычно наблюдается только в сильно кислых растворах (например, в конц. H 2 SO 4), и особенно часто для эфиров пространственно затрудненных ароматических кислот.

Механизм В АС 1 пока неизвестен.

Механизм В АL 2 найден только в случае исключительно сильного пространственно экранированных ацильных групп и нейтрального гидролиза -лактонов. Механизм А AL 2 пока неизвестен.

По механизму А AL 1 обычно реагируют третично-алкильные сложные эфиры в нейтральной или кислой среде. Эти же субстраты в подобных условиях могут реагировать по механизму В АL 1, однако при переходе в чуть более щелочную среду механизм В АL 1 сейчас же сменяется на механизм В АС 2.

Как видно из схемы 18.1, реакции, катализируемые кислотами, обратимы, и из принципа микроскопической обратимости (гл.2) следует, что и катализируемая кислотами этерификация тоже протекает по подобным механизмам. Однако при катализе основаниями равновесие сдвинуто в сторону гидролиза (омыления), поскольку равновесие сдвигается вследствие ионизации карбоновой кислоты. Согласно приведенной схеме в случае механизма А АС 1 группы COOR и COOH протонируются по алкоксильному или гидроксильному атому кислорода. Вообще говоря, с точки зрения термодинамики более выгодно протонирование карбонильного кислорода, группы C=O, т.к. в этом случае положительный заряд может делокализоваться между обоими атомами кислорода:

Тем не менее в небольших количествах в растворе содержится и таутомерный катион - необходимый интермедиат в механизме А АС 1. Оба В1 - механизма (из которых В АС 1 неизвестен) на самом деле вовсе не каталитические, ибо в начале происходит диссоциация нейтрального эфира.

Из восьми ингольдовских механизмов экспериментально доказаны лишь шесть.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.